Program Development Life Cycle

- **❖To be a successful Programmer requires**
 - ◆ Analytical Problem Solving Skills
 - ◆ Troubleshooting Skills
 - ◆ Knowledge of Programming Language
 - ◆ Applying Program Development Life Cycle
- ❖Program Development Life Cycle Phases
 - 1. Analysis Phase
 - 2. Design Phase
 - 3. Implementation Phase
 - 4. Use Phase

Copyright © 2005 R.M. Laurie

1. Analysis Phase

- Investigate and analyze the nature of problem
 - ◆ Programmer meets with users to discuss and analyze the problem
 - What are the dependent inputs?
 - ♦ What are the desired outputs?
 - ◆ What processing will be required?
 - ♦ What are event triggers?
 - ◆ Means-Ends Analysis

Write Program Specifications Report

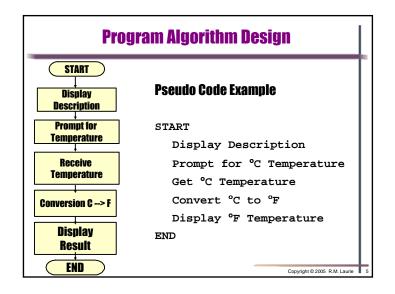
- ◆ Write the program requirements
- ◆ Write the program specifications description
 - ♦ Describe the goals of the program
 - ♦ Describe appearance of input and output

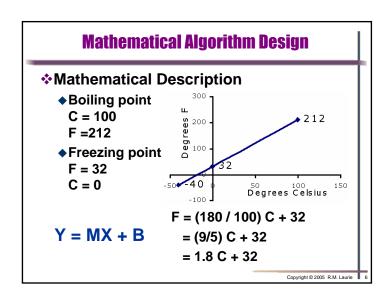
Copyright © 2005 R.M. Laurie

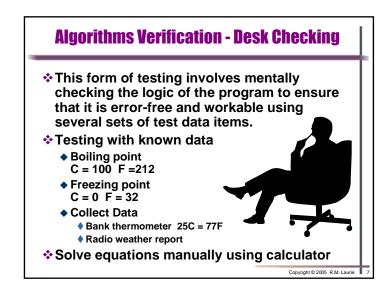
Program Specifications Report

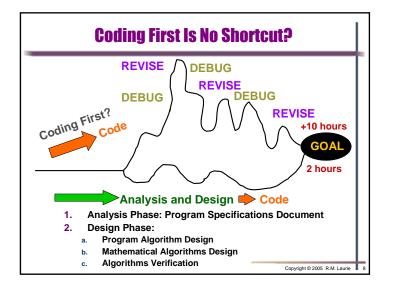
- Program Requirements
 - Temperature conversion from degrees Celsius to degrees Fahrenheit
- Program Specifications Description
 - The program will accept an entered Celsius temperature and convert it to Fahrenheit.
 - 2. Any real number may be entered.
 - 3. The appearance of input prompting and the results will be displayed as follows.

This program converts a temperature from degrees Celsius to degrees Fahrenheit.


Enter the Celsius Temperature


Results: 25C = 77F


2. Design Phase


- Program Algorithm Design
 - Design program algorithms to achieve the desired results and model the required processing
 - ◆ Flow Charts A pictorial representation of the ordered step by step process to solve the problem
 - Psuedocode English like language that can state solution precisely but less less precision than C++
- Mathematical Algorithms Design
 - ◆ Perform mathematical analysis of problem
 - ◆ Determine mathematical equation algorithms
- Algorithms Verification
 - ◆ Desk check the algorithms by solving manually
 - Use known input test data and examine results to determine algorithm accuracy

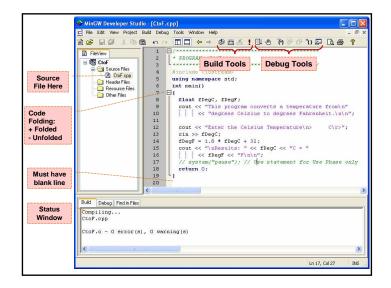
Copyright © 2005 R.M. Laurie

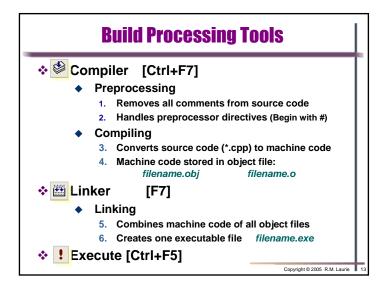
3. Implementation Phase

- Translate Algorithm into Code
 - ◆Create source code file that follows syntax of C++ programming language
 - **◆**Compile to detect syntax errors
 - ◆Debug all syntax errors
- **❖Test Program**
 - ◆Test with known data
 - **◆** Detect program *logic errors*
 - ◆Often requires several iterations
 - May require re-evaluation of specifications and algorithms

Copyright © 2005 R.M. Laurie

```
/**************
2. * PROGRAM: CtoF.cpp
4. #include <iostream>


    using namespace std;


6. int main()
8.
     float fDegC, fDegF;
9.
     cout << "This program converts a temperature from\n"</pre>
           << "degrees Celsius to degrees Fahrenheit.\n\n";
11. cout << "Enter the Celsius Temperature\n>
                                              C\r>";
12. cin >> fDegC;
13. fDegF = 1.8 * fDegC + 32;
14. cout << "\nResults: " << fDegC << "C = "
15. << f
16. return 0;
          << fDegF << "F\n\n";
17. }
                 This program converts a temperature from
                 degrees Celsius to degrees Fahrenheit.
                 Enter the Celsius Temperature
                 >25 C
                 Results: 25C = 77F
```

Integrated Development Environment

- MinGW Developer Studio
 - ◆ Open Source, Freeware
 - **◆ Uses GNU GCC Compiler**
- * Requires the use of Project
 - ◆ Create the *filename.cpp* inside the project
 - Provides text editor with syntax highlighting
 - ◆ Provides integrated *debugger*
 - Breakpoint and Instruction Step capability
 - ♦ Provides Variable Watch to examine its value
 - Similar UI as Microsoft Visual C++

Copyright © 2005 R.M. Laurie 1

4. Use Phase

- Program is released for customer use
 - You may need to insert the statement
 system("pause"); // Use Phase only
- Program is used for its intended purpose
 - Bugs may be found by users for untested input data cases
 - Customers may want custom modifications of a released product +\$\$\$
- Program often revised and improved
 - ◆ Based on user feedback
- Patches provided to correct Use Phase bugs
 - Software Companies typically make them available on their website

Copyright © 2005 R.M. Laurie 1

Programming Debugging Tools

- ❖ □ 3o [F5]
 - Run code from cursor position
- ❖ Toggle Breakpoint [F9]
 - Program will stop execution at breakpoint
- ♦ To Step Into Code [F11] (Don't use vet)
 - Run one code statement from main program and follows into called functions
- ❖ Step Over Code [F10] (Use This One)
 - Run one code statement from main program and does not follow into called functions
- Step Out Code [Shift + F11]
 - Run code statements until back to main program (Do this if Step Into)
- ♣ TO Run Code to Cursor [Ctrl + F10]
 - Run code statements from main program until cursor statement
- ♦ Watch [Shift + F9]
 - Examine value of variables while stepping through program

Converight © 2005, P.M. Laurio

Assignment

- Create a program that will do both temperature conversions between the Fahrenheit and Celsius temperature systems
- 2. The user will be prompted for the conversion to perform and the appropriate temperature
- 3. Display an introduction to the program and the results with correct units
- 4. Start with the analysis phase and design phase before doing any coding
 Use the problem solving methods
 - a. Means-Ends Analysis
 - b. Solving By Analogy
 - c. Divide And Conquer
 - d. The Building-Block Approach
- 5. Test your design using known test data before starting C++ coding

Copyright © 2005 R.M. Laurie