

FFuunnddaammeennttaallss ooff DDiiggiittaall SSyysstteemmss

by
Robert M. Laurie

This text material is a work in progress.
Please contact me with suggestions and corrections:

Robert M. Laurie
Electrical & Computer Engineering
Michigan Technological University
Houghton, Michigan 49931 USA

boblaurie@yahoo.com

Copyright  2000 by R.M. Laurie, All Rights Reserved

 Page i Copyright  2000 R.M. Laurie

TTaabbllee ooff CCoonntteennttss

Chapter 1. Introduction..1

1.1. Digital Logic States ..1

1.2. Modularity..3

Chapter 2. Combinational Logic..4
2.1. Logic Gates ...4

2.2. Boolean Algebra...7

2.3. Boolean Equivalence Verification...8
2.3.1. Truth Table Verification... 9
2.3.2. Boolean Algebra Verification .. 10

2.4. Combinational Network Design..11
2.4.1. Description to Digital Circuit Design... 12

2.4.1.1. Sum of Products (SOP) Method .. 13
2.4.1.2. Product Of Sums (POS) Method ... 14
2.4.1.3. Induction Method .. 14

2.4.2. Digital Circuit Minimization .. 15
2.4.3. Boolean Expressions from Digital Circuit.. 16

2.5. Common Combinational Circuits...17
2.5.1. Decoders... 18
2.5.2. Multiplexers ... 19
2.5.3. Binary Adders .. 20
2.5.4. Arithmetic Logic Units... 22

Problem Set ...23

Chapter 3. Integrated Circuits ...26
3.1. Dual In-Line Packages...26

3.2. Surface Mount Packages ...30

3.3. Integrated Circuit Technologies ...31

3.4. Device Outputs ...34
3.4.1. Tri-state Gates .. 35
3.4.2. Open-Collector Gates ... 36
3.4.3. Drivers.. 37

Problem Set ...38

Copyright  2000 R.M. Laurie Page ii

Chapter 4. Sequential Logic...40
4.1. Sequential Logic Devices ...41

4.1.1. J-K Flip-Flop .. 41
4.1.2. T Flip-Flop .. 42
4.1.3. D Flip-Flop and Latch .. 43
4.1.4. Preset And Clear Inputs.. 43

4.2. Timing Diagram Construction For Sequential Circuits...45

4.3. Sequential Circuits...45
4.3.1. Frequency Dividers and Counters .. 45
4.3.2. Data Registers .. 47
4.3.3. Shift Registers .. 48
4.3.4. Data Converters.. 49

4.3.4.1. Serial to Parallel Data Converter ... 50
4.3.4.2. Parallel to Serial Data Converter ... 50

4.4. Sequential Integrated Circuits..50

Problem Set ...52

Chapter 5. Number Systems And Codes ..57
5.1. Unsigned Binary Numbers ..57

5.1.1. Binary to Decimal Conversion ... 57
5.1.2. Decimal to Binary Conversion ... 58

5.2. Signed Binary Numbers ..59

5.3. Binary Addition..61

5.4. Binary Number Magnitude...63

5.5. Binary Coded Decimal Representation..64

5.6. Floating Point Representations...65

5.7. Hexadecimal Numbers...65
5.7.1. Binary to Hexadecimal Conversion.. 65
5.7.2. Hexadecimal to Binary Conversion.. 66
5.7.3. Hexadecimal to Decimal Conversion... 66
5.7.4. Decimal to Hexadecimal Conversion... 66
5.7.5. Hexadecimal Addition.. 67

5.8. Alphanumeric Data Representation...67
5.8.1. Binary String to ASCII Character Conversion ... 68
5.8.2. ASCII Character to Binary String Conversion ... 68

Problem Set ...70

Problem Set Solutions for Select Problems ..71

 Page iii Copyright  2000 R.M. Laurie

TTaabbllee ooff FFiigguurreess

Figure 1.1 Common Notation for Logic States 1
Figure 1.2 Simple Digital Circuit Using a Switch 1
Figure 1.3 Digital Signal Representation 2
Figure 1.4 Binary to Decimal Conversion Table (0 through 15) 2
Figure 1.5 Computer System Block Diagram 3

Figure 2.1 Truth Tables for Primary Gates. (a) NOT, (b) AND, and (c) OR 5
Figure 2.2 Truth Tables for (a) NAND, (b) NOR, and (c) XOR Gates. 6
Figure 2.3 Truth Table for a 3-Input AND Gate 6
Figure 2.4 Boolean Symbols 7
Figure 2.5 Boolean Algebra Identities 8
Figure 2.6 Gate Description for DeMorgan's Laws 8
Figure 2.7 Equivalent Combinational Networks 12
Figure 2.8 SOP Digital Circuit Drawing 13
Figure 2.9 POS Digital Circuit Drawing 14
Figure 2.10 Unsimplified Digital Circuit From Induction 16
Figure 2.11 Simplified Digital Circuit from Induction 16
Figure 2.12 Boolean Expressions for All Outputs 17
Figure 2.13 Boolean Expression For One Output 17
Figure 2.14 3 to 8 Decoder 18
Figure 2.15 4-Data Input Multiplexer 19
Figure 2.16 Half Adder 20
Figure 2.17 Full Adder 20
Figure 2.18 Four Bit Binary Adder 21
Figure 2.19 Single-Bit 4-Function ALU 22

Figure 3.1 14-Pin DIP Package 27
Figure 3.2 Functional Views of Several 7400 Series Integrated Circuits 28
Figure 3.3 IC Digital Circuit Drawing 29
Figure 3.4 MSI Dual In-Line Packages 30
Figure 3.5 Surface Mount Technology DIP Style 31
Figure 3.6 Surface Mount Technology Chip Carrier Style 31
Figure 3.7 Properties of Several IC Technologies 32
Figure 3.8 Electrical Characteristics of Four Semiconductor Technologies 33
Figure 3.9 Switch Analogies for Output Devices 35
Figure 3.10 Tri-state Gate Truth Table and Symbolic Representation 36
Figure 3.11 Open-Collector Buffers Configured as Wire-AND Circuit 37

Figure 4.1 Timing Diagram 40
Figure 4.2 J-K Flip-Flop (- Edge Triggered) 42
Figure 4.3 Timing Diagram for the J-K Flip-Flop 42
Figure 4.4 The T Flip-Flop (+Edge Triggered) 43
Figure 4.5 Timing Diagram for a Positive Edge Triggered T Flip-Flop 43
Figure 4.6 D Flip-Flop (- Edge Triggered) 44

Copyright  2000 R.M. Laurie Page iv

Figure 4.7 Timing Diagram for the D Flip-Flop and D Latch 44
Figure 4.8 J-K Flip-Flop with Preset and Clear Inputs 44
Figure 4.9 Divide-by-Eight Frequency Divider or Three Bit Binary Counter 46
Figure 4.10 Divide-by-Ten Frequency Divider or Decade Counter 47
Figure 4.11 Four Bit Data Register 48
Figure 4.12 Four Bit Shift Register 49
Figure 4.13 Parallel to Serial Data Converter 51

Figure 5.1 Decimal and Binary Number Systems 58
Figure 5.2 Unsigned Decimal to Binary Conversions 59
Figure 5.3 Some Signed Binary to Decimal Conversions 60
Figure 5.4 8-Bit Adder Circuit With Overflow and Carry Flags 63
Figure 5.5 Binary Coded Decimal Codes 64
Figure 5.6 Floating Point Number Representation 65
Figure 5.7 Hexadecimal Numbers 66
Figure 5.8 ASCII Conversion Table 69

 Chapter 1 Introduction

 Page 1 Copyright  2000 R.M. Laurie

CChhaapptteerr 11.. IInnttrroodduuccttiioonn

Digital computers have brought about the information age that we live in today.

Computers are important tools for humankind in that they can locate and process enormous
amounts of information very quickly and efficiently. They allow us to utilize our
mathematical disciplines to the fullest. In one second a computer can perform calculations
that would take a person months to do by hand. However, computers are not creative and do
only what we tell them. The list of instructions that tells the computer what to do is called a
computer program.

System reliability, fast performance, and efficient information storage and retrieval are
major factors in the acceptance and use of digital computer systems. The high reliability of
computer systems is due largely to the fact that all data is in a digital format. Digital
computers are designed such that digital formatted data can be processed quickly and
efficiently.

1.1. Digital Logic States
A computer is made up of many digital circuit modules that pass information in the

form of digital signals. These signals can represent either program instructions or data to be
processed. A digital signal can be considered a logic variable in that it can have only one of
two possible values at any moment in time. These values are called logic states. Figure 1.1
describes the common notation for logic states.

Figure 1.1 Common Notation for Logic States

 True On Closed Yes 1 High 2 to 5 Volts

 False Off Open No 0 Low 0 to 1 Volt

Two possible logic states can be represented by the opening and closing of the switch in

the circuit of Figure 1.2. When a logic state is TRUE, the switch is CLOSED and the light
goes ON. When a logic state is FALSE, the switch is OPENED and the light goes OFF. A
question that can be answered with YES or NO can also be said to have two logic states.

Figure 1.2 Simple Digital Circuit Using a Switch

 (a) (b)

Chapter 1 Introduction

Copyright  2

Digital circuit inputs and outputs are logic variables whose states are usually

represented in binary (base 2) notation as a ‘1’ or ‘0’. A digital signal is characterized as a
time variant signal, which is in either a HIGH or LOW State. Transition time between HIGH
and LOW states is minimized which results in a waveform as depicted in Figure 1.3. The
primary constraint for a digital signal is whether the signal is above or below a specified
threshold window. This threshold window is commonly between 1 and 2 Volts. Any signal
which is greater than 2 Volts is considered logic ‘1’ or HIGH state, and any signal which is
less than 1 Volt is considered logic ‘0’ or LOW state. Within the threshold window (between
1 and 2 Volts) the Logic State of the signal is undefined.

Figure 1.3 Digital Signal Representation

To perform logic operations, a device is required which can function as a switch with

two possible states. Generally, it is desirable to have this switching occur as fast as possible.
Electronics is currently the fastest, most compact, and least expensive way to implement a
digital switch. Therefore, computer design is usually considered in the realm of electrical
engineering.

Digital switches are implemented using an electronic device called a transistor. Using
integrated circuit chip technology, it is possible to integrate millions of transistors on a single
silicon chip. The rapid advances in digital electronics technology has led to the relatively
inexpensive and compact computer systems that we use today.

The binary (Base 2) number system is often used to represent the states of several
related logic variables at a specific instant in time. Figure 1.4 describes the binary equivalent
for the decimal (Base 10) numbers zero through fifteen. Only two possible values can exist
for each binary digit, either ‘0’ or ‘1’. A single binary digit is called a bit and a group of
eight bits is called a byte. A group of four bits as shown in Figure 1.4, is called a nibble.

Figure 1.4 Binary to Decimal Conversion Table (0 through 15)

Binary Decimal
0 0 0 0 00
000 R.M. Laurie

0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1

01
02
03
04
05
06
07
Binary Decimal
1 0 0 0 08
Page 2

1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

09
10
11
12
13
14
15

 Chapter 1 Introduction

 Page 3 Copyright  2000 R.M. Laurie

Note that the binary number is zero-filled to four bits, just like the decimal number is zero-
filled to two digits. A thorough description of the binary number system, including
conversion methods, is presented in Chapter 5.

1.2. Modularity
Two major aspects in the design of any computer system are hardware and software.

Hardware is the physical computer, while software consists of the computer programs
required to make the computer perform desired functions. Hardware and software must
function together in a working computer system.

Modularity is one of the most important concepts in computer engineering and is
applied in both hardware and software. Modularity is the process by which once something
is designed to perform a desired function; it may be used as a functional block or module to
implement the same function in a future design. Modularity avoids the "re-inventing of the
wheel" syndrome, and minimizes design time. Modularity can best be utilized by
partitioning a large task into simpler functional blocks or modules. This partitions the design
into many manageable tasks that can usually be solved separately using previously designed
modules. These modules are then interconnected to perform the desired function.

Hardware modularity has led to the rapid advances in computer technology. A
computer can be viewed as a group of functional modules, with each module consisting of a
hierarchy of smaller sub-modules. All modules are constructed using transistors in the form
of integrated circuits. Figure 1.5 illustrates a block diagram of a computer system. All digital
computer systems, whether small microprocessor based computers or large super computers,
have this same structure. The major components are memory, a CPU, and I/O ports. Memory
is used to store binary data that can represent either information or program instructions. The
Central Processing Unit (CPU) is used to process data as specified by the instructions of the
program. Input/output (I/O) ports are used to transfer information between interface devices
and peripherals that may be in the form of a keyboard, display, printer, or disk drives. Figure
1.5 illustrates all functional blocks interconnected using circuit paths called buses.

Software modularity is utilized when a computer program is being written. A program
can be divided into many functional modules or functions. Each function can be written and
debugged separately. Thus, software development employs modularity principles by
partitioning a large program into several smaller and more manageable tasks.

Figure 1.5 Computer System Block Diagram

Central
Processor

Unit
Memory

Interface
Device

I/O
Port

Buses

Chapter 2 Combinational Logic

Copyright  2000 R.M. Laurie Page 4

CChhaapptteerr 22.. CCoommbbiinnaattiioonnaall LLooggiicc

The hardware of a computer system is made of digital logic devices that are
interconnected to form a digital circuit. Digital logic is divided into two categories:
combinational logic and sequential logic. Combinational logic devices respond with a fixed
set of transformation rules, which specify the state of all outputs for every combination of
input states. For combinational logic the outputs are a function of only the present state of
the inputs. For sequential logic the output is a function of both the present state of inputs and
the past state of the output.

2.1. Logic Gates
A logic gate is a device that uses a fixed set of rules to transform a set of logical

variable inputs into a single logical variable output. Although the inputs and output may vary
with time, the transformation rules for a logic gate are time invariant. The output is
dependent only on the states of the inputs at that instant.

Logic gates can be connected together to form complex digital circuits, called
combinational networks. These networks can transform a large set of digital inputs into a
large set of outputs. When studying combinational networks, past behavior is not important;
what is important are the rules that specify the state of the outputs as a function of all
combinations of input states.

All digital circuits, including the largest of computers, are built from three primary
logic gates. These primary gates are called NOT (or Inverter), AND, and OR. The inputs and
output of a logic gate are logic variables that are in either a one or ‘0’ state. The
transformation rules for a gate are specified in a truth table. The truth table specifies the state
of the output for all possible combinations of input states. Figure 2.1 contains the truth tables
for the NOT, AND, and OR gates. Also shown is the digital circuit drawing symbols and
Boolean algebra symbols for each of these three gates.

The NOT gate is often called an inverter since its output state will be the inverse of the
input state. The circuit symbol for the NOT gate is a triangle with a circle on the output, as
shown in Figure 2.1a. The Boolean algebra symbol for the NOT operation is an inversion bar
placed over the input logic variable. The NOT operation is defined for only one input, while
the AND and OR operations require more than one input.

The AND operation for two inputs is depicted by the truth table and logic symbol
shown in Figure 2.1b. The AND gate output is ‘1’ only if all inputs are ‘1’; otherwise, the
output is ‘0’. The Boolean algebra symbol for the AND operation is the same as
multiplication in algebra of real numbers.

The OR operation for two inputs is depicted by the truth table and logic symbol
illustrated in Figure 2.1c. The OR gate output will be ‘1’ if any input is in the ‘1’ state.
Therefore, the only case for which the output is ‘0’ occurs when all inputs are ‘0’. The
Boolean algebra symbol for the OR operation is represented by a plus symbol.

Three additional gates, the NAND, NOR, and XOR (Exclusive OR) are simple
combinations of the three primary gates NOT, AND, and OR. Figure 2.2 contains the truth
tables for the NAND, NOR, and XOR. Also shown, are the digital circuit symbols and
Boolean algebra symbols for each of these three gates.

 Chapter 2 Combinational Logic

 Page 5 Copyright  2000 R.M. Laurie

Figure 2.1 Truth Tables for Primary Gates. (a) NOT, (b) AND, and (c) OR

The NAND gate can be considered an abbreviation for NOT-AND. The truth table for a

NAND gate is the same as an AND gate with its output inverted (NOT). The NAND gate
can be drawn as a digital circuit with an AND gate output connected to a NOT gate input.
The NAND gate is such a common logic gate that it is usually drawn as an AND gate with a
circle on the output of the gate as shown in Figure 2.2a. This circle is called an inversion
circle and represents a NOT operation performed on the specified output. The Boolean
algebra symbol for a NAND operation is represented with the inversion of the AND
operation or AB.

The NOR gate is similarly a NOT-OR operation which is represented as an OR gate
with its output inverted. This can be verified by examining the truth table of Figure 2.2b. The
circuit symbol for a NOR gate is an OR gate with an inversion circle on the output. The
NOR operation is represented in Boolean algebra as A+B.

The Exclusive OR (XOR) operation is defined by the following statement: If an odd
number of inputs are ‘1’ then the output is a ‘1’; otherwise, the output is ‘0’. The circuit
symbol for an XOR gate is shown in Figure 2.2c. It is similar to an OR gate with an
additional arc drawn across the input side of the gate. The Boolean algebra symbol for the
Exclusive OR operation is a plus sign enclosed in a circle denoted by A⊕ B.

More than two inputs may be used for the AND, NAND, OR, NOR, and XOR gates. A
gate with a total of n inputs will have 2n possible combinations of these n inputs. Therefore,
when constructing the truth table for a gate with n inputs, 2n rows must exist which represent

Chapter 2 Combinational Logic

Copyright  2000 R.M. Laurie Page 6

all possible combinations of input states. This is illustrated by the truth table in Figure 2.3
for a 3-input AND gate. It is best to use the binary counting scheme described in Figure 1.4
to account for all possible combinations of input states.

Figure 2.2 Truth Tables for (a) NAND, (b) NOR, and (c) XOR Gates.

Figure 2.3 Truth Table for a 3-Input AND Gate

 Chapter 2 Combinational Logic

 Page 7 Copyright  2000 R.M. Laurie

2.2. Boolean Algebra
Boolean algebra is a branch of mathematics for which the values of all variables are

either ‘0’ or ‘1’. There are three primary Boolean algebra operations which consist of the
logic operations NOT, AND, and OR. Since binary (base 2) numbers can represent all logic
values in digital circuits, Boolean algebra can be applied for analysis and synthesis of digital
circuits. Boolean symbols were used for the output variable in the previously described truth
tables. These symbols are summarized in Figure 2.4.

Figure 2.4 Boolean Symbols

 _
 A = NOT A = Complement A A⊕ B = A Exclusive-OR B

 AB = A AND B A B = A NAND B

 A+B = A OR B A+B = A NOR B

Just as any other branch of mathematics, Boolean algebra has many identities that have
been proven and can be used for simplification or to find equivalent expressions. The most
common identities are listed in Figure 2.5. All variables in Boolean algebraic descriptions
are logic variables. Therefore, the variables A, B, and C of Figure 2.5 have a value of either
‘1’ or ‘0’. Keeping this in mind, many of the results of these identities are fairly intuitive.
The first five identities of Figure 2.5 are the fundamental identities of Boolean algebra.
Using these identities, all other identities of Figure 2.5 can be proven using Boolean
algebraic manipulation.

Once a Boolean algebra equivalency is proven it can be used as an identity.
Equivalence in Boolean algebra is not the same as equality in algebra of real numbers. For
example, consider an OR gate with both inputs connected to logic ‘1’. This could be written
as 1 OR 1 = 1 or in Boolean algebraic form as 1 + 1 = 1. A common mistake during Boolean
algebra manipulation is the improper use of the inversion bar. Note that A B ≠ A B.

DeMorgan's law is a very important identity that is used for manipulating inversion
bars. DeMorgan's AND Law is written in Boolean algebraic form as A B = A + B, and
can be stated as NOT the quantity A AND B is equivalent to NOT A OR NOT B.
DeMorgan's OR Law is an alternate form and is written algebraically as A+B = A B. Both
the AND and OR forms of DeMorgan's Law are equivalent, which is proven in Example
2.2d. DeMorgan's law can also be extended too more than two variables. By applying
DeMorgan's law, equivalent gate symbols can be found as shown in

Figure 2.6. Note that inversion circles can be used to show an inversion of the input
variables as well as the output.

Duality is a Boolean algebra principle describing once equivalence is proven a dual of
this equivalence can be determined that is also a valid equivalence expression. The dual of a
Boolean expression can be determined as follows: Replace all AND operations with OR
operations and all OR operations with AND operations on both sides of the equivalency;
then replace all 1's with 0's and 0's with 1's on both sides of the equivalency. The duality
principle was applied in constructing the identity table of Figure 2.5. Note that the dual of
the AND form of an identity is the OR form of the same identity.

Chapter 2 Combinational Logic

Copyright  2000 R.M. Laurie Page 8

Substitution is the process by which a logic variable may be substituted for a Boolean
expression or vise-versa. Substitution is frequently used when simplifying a Boolean
expression. It can also be used to extend the identities of Figure 2.5 to a greater number of
variables than what is specified.

Double Inversion is another identity. If a Boolean expression has two inversion bars
over it, they cancel each other and both inversion bars can be removed. This relationship can
be expressed in algebraic form as A = A or A B = A B.
Note that A B ≠ A B.

Figure 2.5 Boolean Algebra Identities

Figure 2.6 Gate Description for DeMorgan's Laws

2.3. Boolean Equivalence Verification
For any given combinational network, a Boolean expression can be written for each of

the outputs in terms of the inputs. Using Boolean algebra, equivalent circuit designs can be
found for optimizing a design or predicting the results for various situations.

 Chapter 2 Combinational Logic

 Page 9 Copyright  2000 R.M. Laurie

Two methods may be employed to verify Boolean identities or find an alternate
equivalent solution. One method uses a truth table and the other uses Boolean algebra.

2.3.1. Truth Table Verification
When constructing a truth table the output values must be found for all possible

combinations of input states. For n input variables, 2n rows will be required for the truth
table. All logic variables are in either the ‘1’ or ‘0’ state. Example 2.1a through Example
2.1c illustrates the use of truth tables to prove equivalency of two Boolean expressions.

Example 2.1 Truth Table Verification

Construction of the truth table begins by writing all possible combinations of input

logic states in the left-most columns of the truth table. This can be done best by using the
binary counting scheme of Figure 1.4 to account for all possible combinations of input
variables. Then perform one primary logic operation (AND, OR, or NOT) by determining
the output value of the logic operation for all combinations of input logic variables. Any
column can be used as an input to perform additional logic operations, whether it is an
output from a previous logic operation or an input logic variable. For clarity, vertical lines
should separate all columns that represent results of logic operations. Continue performing
logic operations in the truth table until two columns exist which represent the two Boolean

Chapter 2 Combinational Logic

Copyright  2000 R.M. Laurie Page 10

expressions on either side of the equality. If the columns match for all possible combinations
of the inputs, the two Boolean expressions are said to be equivalent.

Example 2.1 demonstrates truth table verification to prove the Identity AND Law and
DeMorgan's OR Law. Any of the identities of Figure 2.5 may be proven using truth tables.
Example 2.1c describes a Boolean relationship, which is verified using a truth table. Once
this relationship is proven to be equivalent, it may be used as an identity.

2.3.2. Boolean Algebra Verification
In mathematics, algebraic manipulation using proven identities can create equivalent

expressions. The same procedure can be applied to Boolean algebra. Using the Boolean
identities of Figure 2.5, substitution, and double inversion, a Boolean expression can be
manipulated to find an alternate equivalent expression. Two expressions are equivalent when
they generate the same results for all possible combinations of logic variable inputs.
Equivalence can be proven using truth tables. However, for expressions with more than four
logic variables, truth tables become tedious and Boolean algebra verification is often easier.

Example 2.2 Algebraic Verification

 Chapter 2 Combinational Logic

 Page 11 Copyright  2000 R.M. Laurie

Example 2.2a and Example 2.2b demonstrate the use of Boolean algebra to verify the

Absorption OR Law and Inclusion OR Law using other identities from Figure 2.5. Note that
the identities of Figure 2.5 specify the form of equivalent expressions and not the actual
input variables themselves. Example 2.2c illustrates the use of Boolean algebra to simplify
an expression. After simplification is performed, one can see that output X is dependent only
on the value of input C and is in fact equivalent to C. Example 2.2d demonstrates that both
the AND and OR forms of DeMorgan's law are equivalent using Boolean algebraic
manipulation.

2.4. Combinational Network Design
Design of combinational networks requires a working knowledge of Boolean algebra,

truth table construction, and digital logic gate representations. It is essential to know how to
go from one representation to another.

Several configurations of logic gates may have the same input/output characteristics;
that is, each combination of input states produces the same output states. Two combinational
networks with the same input/output characteristics are said to be equivalent. Equivalence is
verified through truth table construction or Boolean algebra. Figure 2.7 illustrates two
equivalent combinational networks. The networks are the digital circuits representing the
Distributive AND Law of Figure 2.5.

Chapter 2 Combinational Logic

Copyright  2000 R.M. Laurie Page 12

2.4.1. Description to Digital Circuit Design
Once a description of the desired logic function is defined, a digital circuit can be

designed to implement the function. The description may be a truth table or a verbal
description. To understand the function of a digital circuit, the state of the outputs must be
known for all possible combinations of inputs. Constructing the truth table, as discussed in
Section 2.3.1, is one way to account for all possible combinations of inputs.

After the description is defined, the next step towards designing the digital circuit is to
determine a Boolean expression that describes the desired function. The Sum of Products
and Product of Sums methods are two procedures, which can be utilized to determine a valid
Boolean expression directly from a truth table description. The induction method is used to
determine a valid Boolean expression directly from a verbal description.

The truth table of Figure 2.7 is used as an example to demonstrate the sum of products
method for the second output column (X=A+BC).

After a Boolean expression has been found to describe the logic function, the digital
circuit can be designed directly. This is accomplished by using the gates discussed in Section
2.1 to implement each of the logic functions of the Boolean expression. Just as with algebra
of real numbers, product operations (AND functions) are performed first and then sum
operations (OR functions). Parentheses are used to specify a different order of operation and
to group terms.

Two simple digital circuits are illustrated in Figure 2.7 for outputs X and Y. Examining
the output X and Y columns of the truth table of Figure 2.7, one can verify that these are
equivalent circuits.

Figure 2.7 Equivalent Combinational Networks

 Chapter 2 Combinational Logic

 Page 13 Copyright  2000 R.M. Laurie

2.4.1.1. Sum of Products (SOP) Method
The Sum of Products (SOP) method is a procedure, for determining a valid Boolean

expression from a truth table description. This method considers only those rows of the truth
table with logic ‘1’ in the output column.

Examining the truth table of Figure 2.7, Output X equals ‘1’ in the fourth row. This
occurs when the inputs conditions are A=0, B=1, and C=1. Similarly, for the fifth row X
equals ‘1’ when A=1, B=0, and C=0. Boolean expressions can be written to express these
relationships for the fourth and fifth rows as ABC=1 and ABC =1. Likewise, Boolean
expressions can be written for the sixth row as ABC=1, the seventh row as ABC=1, and
eighth row as ABC=1. These Boolean expressions are called minterms. Minterms only exist
for rows that have an output of logic 1. A Boolean expression can be written describing the
entire truth table by OR'ing each of the five minterms together. This will result in the
following Boolean expression:

Notice the form of the expression is a sum of products, hence the name of the method

describes the resultant form.
The digital circuit can then be created from this sum of products expression as

illustrated in Figure 2.8.

Figure 2.8 SOP Digital Circuit Drawing

Chapter 2 Combinational Logic

Copyright  2000 R.M. Laurie Page 14

2.4.1.2. Product Of Sums (POS) Method
The Product Of Sums (POS) method is another procedure, for determining a valid

Boolean expression from a truth table description. This method considers only those rows of
the truth table with logic ‘0’ in the output column.

The first three rows of the truth table of Figure 2.7 have ‘0’s in output column X. A
maxterm can be written for each of these rows using the following procedure:
If the input is 1 for the specified row, the inverse of the input variable is used;
otherwise, if the input is 0, the input variable is used directly.
The input logic variables are then OR'ed together to form the maxterm. Only rows with an
output of 0 will have a maxterm.

The maxterms for the truth table of Figure 2.7 are written as follows: The first row is
(A+B+C), the second row is (A+B+C), and the third row is (A+B+C). The resulting
maxterms can then be AND'ed together to form a valid Boolean expression for the truth
table. This will result in the following expression, which is in product of sum form.

The digital circuit for this product of sums expression is shown in Figure 2.9.

Figure 2.9 POS Digital Circuit Drawing

2.4.1.3. Induction Method
The induction method describes the process of determining a Boolean expression

directly from the verbal description. This is particularly useful for systems with more than
four inputs because truth tables become cumbersome and the resulting sum of products and
product of sums expressions can become lengthy. Output X in Figure 2.7 can be described
verbally as:

X is 1 if A is 1, or if B and C are 1. Otherwise, X is 0.

From this verbal description the Boolean expression can be written directly:
X = A + B C

 Chapter 2 Combinational Logic

 Page 15 Copyright  2000 R.M. Laurie

2.4.2. Digital Circuit Minimization
The digital circuits of Figures 2.7, 2.8, and 2.9, are all equivalent combinational

networks since they all generate the same input/output relationships and are derived from the
same truth table. The digital circuit of Figure 2.7a is the preferred choice since it requires the
least number of logic gates for the implementation. When designing from the truth table it is
best to use the sum of products method when fewer ‘1’ s than ‘0’s exist in the output
column, and use the product of sums method when there are fewer ‘0’s than ‘1’ s.

Once a Boolean expression is found using either sum of products, product of sums, or
induction, algebraic simplification of the expression is often possible using Boolean
identities. This may greatly reduce the number of gates required to construct the circuit.

As an example, suppose a digital circuit must be designed which has two outputs X and
Y; and must accomplish the following functions.

Output X is 1 if either E or F are 1 and D is 0. Otherwise X is 0.
Output Y is 1 if A and B and C are 1, or D is 0 and either B or C are 0, or if D is 1.

 Otherwise Y is 0.

This circuit has 6 inputs (A, B, C, D, E, and F) and two outputs (X and Y). Constructing

the truth table would be tedious with 64 rows, and the resulting SOP or POS Boolean
expressions would require much effort to reduce. For these reasons, the Boolean expression
is found using induction from the verbal description and then simplifying the result.

Both the unsimplified and simplified digital circuits for this example are illustrated in
Figure 2.10 and Figure 2.11. Note that inversion circles are shown on the inputs of some of
the gates. These symbolize inverters.

Chapter 2 Combinational Logic

Copyright  2000 R.M. Laurie Page 16

Figure 2.10 Unsimplified Digital Circuit From Induction

Figure 2.11 Simplified Digital Circuit from Induction

2.4.3. Boolean Expressions from Digital Circuit
Modification of existing digital circuits requires the ability to go from a digital circuit

drawing to a Boolean expression. Two procedures for accomplishing this conversion are
discussed in this section. The first procedure is used when Boolean expressions for all
outputs of a digital circuit are required. The second procedure is for the case when the
Boolean expression for only one output is needed.

The procedure for determining the Boolean expression for all outputs in a digital circuit
is quite straightforward. Beginning from the input side of the digital circuit drawing, write
the output Boolean expression as you progress through each gate. Then use the output
equation from the preceding gate as the input to the next gate in the circuit. Continue writing
Boolean expressions at the output of each gate until the Boolean expressions for all outputs
of the digital circuit are determined. An example of this procedure is shown in Figure 2.12.
Notice the 2-input NAND gate with both inputs tied together. A NAND gate in this

 Chapter 2 Combinational Logic

 Page 17 Copyright  2000 R.M. Laurie

configuration will function as an inverter. Similarly, a NOR gate with all inputs tied together
would also function as an inverter. This can be verified by examining the truth tables of
Figure 2.2.

Figure 2.12 Boolean Expressions for All Outputs

Consider the case of a complex digital circuit with many outputs, and suppose the

Boolean expression for only one output is needed. For this case, the first step is to trace
through the circuit from the output of interest to the inputs, marking each gate that will affect
this output. This is illustrated in Figure 2.13. After the gates are marked, proceed from the
input side to the output of interest by writing the Boolean expression for the output of each
affecting gate. This procedure will save considerable time when determining the Boolean
expression of a single output in complex combinational networks.

Once the Boolean expression is determined for an output, Boolean algebra can then be
used to reduce the expression to a simplified equivalent form.

Figure 2.13 Boolean Expression For One Output

2.5. Common Combinational Circuits
Once a digital circuit has been designed using individual gates to perform a specific

function, it is often desirable to use the newly created circuit as a module for future designs.
Discussed in this section are several commonly used combinational circuits that include

Chapter 2 Combinational Logic

Copyright  2000 R.M. Laurie Page 18

decoders, multiplexers, adders, and arithmetic logic units. These combinational circuits are
used as building blocks to construct all computers.

2.5.1. Decoders
A decoder is a digital circuit with n inputs and 2n outputs. Figure 2.14a illustrates a

logic gate diagram that can be used to construct the 3 to 8 decoder. Figure 2.14b is a block
diagram of the 3 to 8 decoder. Note that the block diagram contains all inputs and outputs
illustrated in the logic gate diagram. After a digital circuit has been designed to perform a
specific function, it can be considered as a functional module and is usually represented by
the block diagram.

The decoder of Figure 2.14 functions such that one and only one output is in the 1 state,
as selected by a binary code placed on select inputs A, B, and C. Since only one output can
be in the 1 state, all other outputs will be in the 0 state.

Decoders are used to select one of 2n devices with an n-bit code. The n-bit code is often
called the address of the selected device. Note that only one device can be addressed at a
time since only one decoder output will be in the 1 state. Decoders are used in computers to
select one of several functions in the CPU and to select one of many memory locations.

Decoders can be constructed to generate either positive logic outputs or negative logic
outputs. The decoder of Figure 2.14 is an example of a positive logic output decoder.
Positive logic output decoders function such that the selected (or enabled) output is in the 1
state and all other outputs are in the 0 state (or disabled). Negative logic output decoders
function such that the selected output is in the 0 state while all other outputs are in the 1
state. A negative logic output 3 to 8 decoder can be constructed by modifying the logic
diagram of Figure 2.14. If the eight three-input AND gates are replaced with eight three-
input NAND gates, then the decoder will have negative logic outputs.

Figure 2.14 3 to 8 Decoder
a) Digital Circuit b) Block Diagram

 Chapter 2 Combinational Logic

 Page 19 Copyright  2000 R.M. Laurie

2.5.2. Multiplexers
A multiplexer is a combinational circuit in which one of several data inputs is selected

and routed to a single output. Figure 2.15 is an example of a four data input multiplexer. The
block diagram of Figure 2.15a illustrates the four data inputs (D0 through D3) of which one is
selected and routed to the single output F. The data input is selected by applying a binary
code on the select inputs A and B. Two select inputs will generate four unique binary codes.
Therefore, any one of four data inputs may be selected when using two select inputs. For a
general case multiplexer with n select inputs a maximum of 2n data inputs could be available.
A multiplexer with 4 select inputs may have a maximum of 16 data inputs.

The 4-data input multiplexer can be constructed using a 2 to 4 decoder and logic gates
as shown in Figure 2.15b. The decoder can be considered as a sub-module within the
multiplexer module. A logic gate implementation for the 4-data input multiplexer is
illustrated in Figure 2.15c. The reader is urged to verify the multiplexer operation. A
functional truth table for the 4-data input multiplexer is shown in Figure 2.15d. Note that the
output state is the state of the selected data input.

Multiplexers are generally used for data routing applications and can be considered as a
data switch. As an example, consider the case of four computers that are connected to one
printer. Only one computer can send data to the printer at a time; therefore, a 4-data input
multiplexer is chosen as a data switch. A two bit binary code will be used to address each of
the four computers.

A demultiplexer performs the opposite function. One data input is routed to several
possible data outputs. Select inputs determine which data output transmits the data. A
demultiplexer will have one data input, n select inputs, and 2n data outputs.

Figure 2.15 4-Data Input Multiplexer
a) Block Diagram b) Digital Circuit c) Logic Gate Diagram d) Truth Table

Chapter 2 Combinational Logic

Copyright  2000 R.M. Laurie Page 20

2.5.3. Binary Adders
Addition of binary numbers is accomplished using a digital circuit called an adder.

Figure 2.16 illustrates a half adder which is used to add two single-bit binary numbers
represented by logic variables A and B. The half adder circuit has two inputs A and B, and
two outputs Sum and Carry.

The truth table for the half adder, shown in Figure 2.16a, describes binary addition of
two single-bit binary numbers. When both inputs are 0, the sum is 0. If either input A or B is
1, but not both, the sum is 1. When both A and B are 1, the sum exceeds what can be shown
with a single bit; therefore, the sum is 0 and the carry is set to 1. The carry output is 1 only
when both inputs A and B are logical 1. Based on this description, the sum operation can be
accomplished by using an Exclusive-OR gate and the carry operation can be performed
using an AND gate.

Figure 2.16 Half Adder
a) Truth Table b) Logic Diagram

Figure 2.17 Full Adder
a) Truth Table b) Logic Diagram

 Chapter 2 Combinational Logic

 Page 21 Copyright  2000 R.M. Laurie

To utilize the carry for the next significant bit, a full adder is used for multi-bit addition.

The truth table and logic diagram of the full adder is shown in Figure 2.17. The 3 inputs A,
B, and Carry In are added together to generate the two outputs Sum and Carry Out. Figure
2.18 illustrates a digital circuit, which will perform binary addition on two four-bit binary
numbers, which are represented by A3 to A0 and B3 to B0. A3 is the most significant bit and
A0 is the least significant bit of the 4-bit binary number A. Four full adder circuits (shown as
block diagrams) are utilized to construct this digital circuit. The Carry In of the least
significant bit is connected to ground because a carry will not occur into the least significant
bit. The Carry Out of the least significant bit is connected to the Carry In of the next
significant bit as illustrated in Figure 2.18. The connections of Carry Out to Carry In of the
next significant bit continue throughout the circuit. When the Carry Out of the most
significant bit is 1, the sum exceeds what can be shown with the number of bits allotted for
the sum. The Carry Out of the most significant bit is often called the Carry Flag.

Figure 2.18 Four Bit Binary Adder

Chapter 2 Combinational Logic

Copyright  2000 R.M. Laurie Page 22

2.5.4. Arithmetic Logic Units
The Arithmetic Logic Unit (ALU) is a device, which can perform several operations on

two binary numbers. All computers contain an ALU, as a module within the Central
Processing Unit. The ALU performs the arithmetic and logic operations specified by the
instructions of a computer program.

Figure 2.19 is an example of a single-bit 4-function ALU. Inputs X and Y are the two
Boolean variables on which a particular operation is performed. Output Z is the result of the
operation. The ALU shown will perform one of four functions (NOT, OR, AND, or SUM)
on the inputs X and Y to generate the result Z. The function performed is determined by the
values of functional inputs F0 and F1. For example, when the F0 and F1 inputs are 0 and 1
respectively, an OR operation will be performed on inputs X and Y. When both F0 and F1 are
1, a sum operation is performed and the Carry In input and Carry Out output will be utilized.
The functional truth table of Figure 2.19 summarizes these operations.

The ALU of Figure 2.19 can be thought of as a module, which contains three sub-
modules, namely a full adder, a logic unit, and 4- data input multiplexer. The full adder and
logic units are used to perform sum and logic operations on the input variables. The
multiplexer is used to route the output of the selected function to output Z.

A four-bit ALU could be constructed by cascading four single-bit ALU modules
together much like the full adder circuit of Figure 2.18. All four functional inputs F1 would
be connected together and all F0 inputs would be interconnected so that each ALU would
perform the same function on each bit.

Figure 2.19 Single-Bit 4-Function ALU

 Chapter 2 Combinational Logic

 Page 23 Copyright  2000 R.M. Laurie

PPrroobblleemm SSeett
1. Make a conversion table from Decimal (Base 10) to Binary (Base 2)

from zero to thirty-five. Zero fill the binary numbers to generate six
bits.

2. Draw the following gates and construct the truth tables for these

gates.

a) 2-input AND Gate

b) 2-input XOR Gate

c) 2-input NOR Gate

d) 3-input NAND Gate

e) 3-input XOR Gate

f) 4-input OR Gate

3. Draw the gates which represent the following Boolean symbols.

a) A+B

b) ABC

c) A+B+C

d) A⊕ B

e) ABCD

4. Prove the following Boolean Identities using Truth Tables.

a) 0A = 0

b) 1 + A = 1

c) AA = A

d) A(A + B) = A

e) (A + B) + C = A + (B + C)

f) A(A + B) = AB

g) A + BC = (A + B)(A + C)

h) AB = A + B

Chapter 2 Combinational Logic

Copyright  2000 R.M. Laurie Page 24

5. Prove the following equivalencies using Boolean algebra.

a) (A + B)(A + C) = A + BC

b) A(A + B) = AB

c) (A + B + C) A = A+B+C

d) A B + C + A B C D + C C = A B + C

e) A B (B+C) = A + B

f) A B + A C + B C = A + B C

g) A B A C = A + B + C

h) (A + B + C) C = A B + C

6. Simplify the following Boolean expression. Verify your answer using a

truth table.

 F = (A + B) (A (B + C)) + A B + A C

7. Write both sum of products and product of sums Boolean expressions

for output Z using the truth table shown. Draw a logic diagram for

both circuits.

8. Draw a logic diagram for the following Boolean Expression.

Z = (A ⊕ B) + B C + B C C

 Chapter 2 Combinational Logic

 Page 25 Copyright  2000 R.M. Laurie

9. Write a Boolean Expression for Output Z.

10. Construct the truth table for the 3 to 8 decoder of Figure 2.13a.

11. Construct the logic diagram and truth table for each of the following

combinational circuits.

a) 2 to 4 Decoder with positive logic outputs.

b) 2 to 4 Decoder with negative logic outputs.

c) 8-Data Input Multiplexer.

d) 4-Data Output De-Multiplexer (Unselected outputs will be in 0 state)

12.Construct a 4-bit adder using logic gates.

Chapter 3 Integrated Circuits

Copyright  2000 R.M. Laurie Page 26

CChhaapptteerr 33.. IInntteeggrraatteedd CCiirrccuuiittss

Digital circuit design is considered a high-level design method, because only the states
of the inputs and outputs are important. Gates will function as expected as long as nominal
analog circuit parameters are not exceeded. There are many advantages to using digital
circuits over conventional analog circuits. These advantages include modularity, reliability,
and noise immunity.

Several procedures have been discussed for designing a digital circuit from either verbal
or truth table descriptions in Section 2.4.1. The next step is to use actual digital circuit
components to construct the circuit.

Gates are not manufactured individually but are sold in packages containing several
gates. These packages are called integrated circuits. Often the term integrated circuit is
abbreviated IC or called by its nicknamed “chip”. Integrated circuits are available in several
package styles. The two most common are the Dual In-line Package (DIP) and Surface
Mount Technology (SMT) packages. Inside the integrated circuit package is a small silicon
chip measuring less than 1/4-inch square. This chip contains the transistors and connecting
circuits required for implementing the logic components. Several transistor technologies
exist for fabrication of silicon chips as described in Section 3.3. .

Integrated circuits are classified by the number of gates fabricated on the integrated
circuit. The classification is approximated by:

SSI (Small Scale Integrated) circuit: 1 to 10 gates
MSI (Medium Scale Integrated) circuit: 10 to 100 gates
LSI (Large Scale Integrated) circuit: 100 to 100,000 gates
VLSI (Very Large Scale Integrated) circuit: > 100,000 gates

3.1. Dual In-Line Packages
A common integrated circuit package is the Dual In-line Package or DIP. Figure 3.1

illustrates mechanical views of a dual in-line package for a 14 pin DIP. DIPs are commonly
available in 14, 16, 20, 22, 24, 28, 40, 64, and 68 pin arrangements with the pins always
positioned in two parallel rows as shown in Figure 3.1. Package materials are usually plastic
or ceramic, with the pins made of gold or tin plated metal. Electrical contact between the
pins and the silicon chip is usually made using gold filament wires which are ultrasonically
welded to conductive pads on the silicon chip. Proper orientation of the IC is determined by
using either the notch shown in or by locating a small depression on the top of the IC, which
specifies pin 1.

The standard dimensional units used for IC packages are inches (English System of
Units), as shown in Figure 3.1, Figure 3.5, and Figure 3.6. Therefore, the physical layout of a
digital circuit on a circuit board is also usually done using inches. Often, measurements are
said to be in mils, which is an abbreviation for mil-inches or thousandths of an inch. It has
become an industry standard to make the pin separation for DIP’s 100 mils or 0.100 inches.

One very common SSI circuit family is the 7400 Series integrated circuits, which are
produced by a variety of semiconductor manufacturers. Functional views of several of these
integrated circuits are illustrated in Figure 3.2. These ICs contain the basic logic gates
described in Section 2.1. Specific pins on the integrated circuit package are connected

 Chapter 3 Integrated Circuits

 Page 27 Copyright  2000 R.M. Laurie

internally to the inputs and output of a gate, which has been fabricated on the chip. Power
and ground are symbolized by Vcc and GND. Power usually comes from a 5 Volt source for
most digital circuits. The following paragraphs describe four integrated circuit classifications
and examples for each.

Small Scale Integrated Circuits (SSI) usually contain several gates inside one integrated
circuit package. When describing the number of functional units in the integrated circuit, one
usually uses the prefixes dual for two, triple for three, quad for four, and hex for six units in
the package. For example the integrated circuits of Figure 3.2 would be described as follows:

7400 = Quad 2-Input NAND Gates, 7404 = Hex Inverters,
7411 = Triple 3-Input AND Gates, 7421 = Dual 4- Input AND Gates

To construct a digital circuit, integrated circuits are usually mounted on a printed circuit

board. The ICs are interconnected using conductive wire-like circuit paths, which are etched
on the circuit board when it is manufactured. The pins of the ICs and other electrical
components are soldered to the circuit board to ensure good electrical contact and
mechanical bonding. Standard DIP integrated circuits are usually classified as through-hole
component technology as their pins must pass through holes in the circuit board before they
are soldered.

Figure 3.1 14-Pin DIP Package

Chapter 3 Integrated Circuits

Copyright  2000 R.M. Laurie Page 28

Figure 3.2 Functional Views of Several 7400 Series Integrated Circuits

 Chapter 3 Integrated Circuits

 Page 29 Copyright  2000 R.M. Laurie

Figure 3.3 IC Digital Circuit Drawing
X = (E + F) D, Y = A + B C + D

Consider the digital circuit of Figure 2.11. To construct this circuit would require one

7400 Quad 2-Input NAND Gate IC, and one 7432 Quad 2-Input OR Gate IC. The IC digital
circuit is designed by drawing lines, which represent circuit paths, between the pins of IC's.
This is demonstrated in Figure 3.3 for the digital circuit diagram of Figure 2.11, which
represents the Boolean expressions X = (E + F) D and Y = A + B C + D. Note that the 3-
input OR gate is implemented by using two 2-input OR gates. Inverters are implemented by
connecting all inputs of a NAND gate together. An extra gate, contained in the 7432 IC, will
not be used. Any extra gates or spares can be used for a future modification of the digital
circuit. Power and ground connections are represented by connections to +5V and
Gnd symbols.

Medium Scale Integrated Circuits (MSI) are collections of interconnecting gates that
are used as a module to perform a specific function. Generally, MSI chips are classified as
those containing between 10 and 100 gates.

The MSI circuit for an 8-data input multiplexer is the 74152, which is shown in Figure
3.4a. Contained in this integrated circuit are the transistors required to implement the
multiplexer function. Standard MSI integrated circuits are available for 4, 8, and 16 data
input multiplexers.

Figure 3.4b illustrates an integrated circuit DIP for a 3 to 8 decoder with negative logic
outputs (74138). The decoder integrated circuit (74138) has three additional inputs, G1,
G2A, G2B called gate or enable inputs. These inputs must be in the proper state to enable the
selected output. Standard MSI decoder circuits are available for 2 to 4, 3 to 8, and 4 to 16
decoders. Specifics on these integrated circuits can be found in a manufacturer's data book.

Chapter 3 Integrated Circuits

Copyright  2000 R.M. Laurie Page 30

Large Scale Integrated Circuits (LSI) are functional modules containing thousands of
gates. LSI chips are generally used for large functions such as microprocessor chips or
memory chips.

Very Large Scale Integrated Circuits (VLSI) are often used for integrating many LSI
functions on a single chip. For example, VLSI microcomputers are manufactured with CPU,
memory, and I/O ports all integrated on a single chip. It is always a challenge for LSI or
VLSI chip designers to design the integrated circuit with a maximum amount of
functionality requiring a minimum number of pins. VLSI components often come in Pin
Grid Array (PGA) packages that are square and contain a matrix of pins, which connect to
the circuit board. Pin grid arrays are available with several hundred pins on a single package.

Figure 3.4 MSI Dual In-Line Packages

3.2. Surface Mount Packages
Surface Mount Technology (SMT) describes a component packaging style in which

components mount directly to the surface of a circuit board. Unlike standard DIP's in which
IC pins must pass through a circuit board to be soldered, surface mount component pins are
small metallic pads that mate with pads on the surface of the circuit board. Solder paste is
used to initially bond the SMT component pins to the circuit board pads. The solder paste is
then heated until reflow occurs and the electrical connection is made between the SMT
component and the circuit board.

Pads can be spaced much closer than through-holes on a printed circuit board.
Therefore, the pin spacing and size of SMT components are usually much smaller than an
equivalent through-hole component DIP package. Pin spacing of 50 mils has become an
industry standard for SMT components.

SMT components have several packaging styles, of which two are illustrated in Figure
3.5 and Figure 3.6. The D package is basically a DIP, but it is approximately one-fourth the
size of a through-hole DIP.

A chip carrier is an SMT component package that is square and contains pins on all four
sides. Figure 3.6 is an example of a 28-pin chip carrier package.

SMT components generally require less then one-fourth the area on a circuit board.
Therefore, they allow at least four times the functionality to be placed on the same sized
circuit board.

 Chapter 3 Integrated Circuits

 Page 31 Copyright  2000 R.M. Laurie

Figure 3.5 Surface Mount Technology DIP Style

Figure 3.6 Surface Mount Technology Chip Carrier Style

3.3. Integrated Circuit Technologies
Integrated circuit chips can contain literally millions of gates all integrated together on a

single chip. The active electronic device used to make each gate is the transistor. Several
different transistor technologies exist for making integrated circuits. Each technology offers
various advantages over other technologies, and advances are continually being made.
Figure 3.7 describes the primary attributes of several common technologies used today,
namely NMOS, CMOS, TTL, and ECL. The density parameter refers to the number of
transistors or gates, which can be fabricated per unit area on a silicon chip. Of the
technologies listed NMOS has the highest packing density and is the primary technology
used when designing VLSI circuits. Power describes the amount of power consumed per
gate on the chip, of which CMOS is the lowest. Speed refers to the propagation delay or
switching time for a gate on the chip. There will always be a finite delay between when the

Chapter 3 Integrated Circuits

Copyright  2000 R.M. Laurie Page 32

inputs of a gate change and the output stabilizes to the new value. Of the four technologies,
ECL is the fastest and has the lowest propagation delay.

Figure 3.7 Properties of Several IC Technologies

Analog circuit parameters are the voltage levels and currents that are associated with
logic gate inputs and outputs. Up to now the assumption has been made that all logic gates
can be interconnected without regard to analog circuit parameters. However, analog circuit
parameters are important should the designer need to mix circuit technologies (i.e. TTL,
CMOS, ECL) or connect many logic gate inputs to a single output. Figure 3.8 describes
analog circuit parameters for several common logic families. Using these analog circuit
parameters we can determine if logic families are compatible and how many logic gates can
be interconnected for each family. Examples 3.1 and 3.2 demonstrate the analysis procedure.

Gates of the same technology will operate at compatible voltage levels. However, there
is a limit to the number of gate inputs that can be connected to a single gate output. This
limit is called the fan-out limit, which is a function of the input currents (IIH and IIL) and the
output currents (IOH and IOL).

Example 3.1 describes the procedure used to determine the fan-out limit for NMOS
gates. The output current must be greater than or equal to the input current requirements for
both the high and low states. A gate output will source current in the high state and sink
current in the low state, as depicted by the Figure 3.9a. The first step in the procedure is to
determine how many inputs can be driven high, by comparing IOH with IIH and solving for M,
as described by Step 1 of Example 3.1. Then determine the number of inputs that can be
pulled low, by comparing IOL with IIL and solving for N, as shown in Step 2 of Example 3.1.
The smaller value of M and N determines the number of inputs that can be driven with a
single output. The quantities for M and N should always be rounded down to the nearest
whole number.

Next consider the problem of interconnecting gates of two different technologies. Both
the voltages and currents must be checked to determine if the output of one technology is
compatible with the inputs of the other technology. Referring back to the threshold window
concept described in Chapter 1, the gate output must provide a voltage above the input
threshold window in the logic 1 state and below the input threshold window in the logic 0
state. This evaluation is performed in steps 1 and 2 of Example 3.2 by determining if VOH is
greater than or equal to VIH, and if VOL is less than or equal to VIL. Next consider the
compatibility of the currents for the two technologies by performing the same evaluation as
was done in Example 3.1. This is accomplished in steps 3 and 4 of Example 3.2 by
determining if IOH is greater than or equal to IIH, and if IOL is greater than or equal to IIL. The
number of inputs which can be connected to an output is the smaller value of M and N. The

 Chapter 3 Integrated Circuits

 Page 33 Copyright  2000 R.M. Laurie

quantities for M and N should always be rounded down to the nearest whole number. If
either M or N is less than 1, then the two technologies are not compatible. To be compatible,
all voltages and current conditions must be met for the interconnecting gate technologies.

Example 3.1: For NMOS logic gates, what is the maximum number of inputs that can be
driven by an output?

Step 1) Compare IOH with IIH 200 x 10-6 = M (2.5 x 10-6) Solving M = 80
 Therefore, one output can source current for 80 inputs in the high state

Step 2) Compare IOL with IIL 1.6 x 10-3 = N (2.5 x 10-6) Solving N = 640
 Therefore, one output can sink current for 640 inputs in the low state

Step 3) The smaller value of M and N determines the number of inputs which can be driven

with a single output. The quantities for M and N should always be rounded down to the
nearest whole number. For this problem M is less than N.

Answer: One output can drive up to 80 inputs.

Figure 3.8 Electrical Characteristics of Four Semiconductor Technologies

 Note: The above values are typical and variations exist between gates of the same family.

Chapter 3 Integrated Circuits

Copyright  2000 R.M. Laurie Page 34

Example 3.2: Can the output of a CMOS gate drive a TTL gate input?

Step 1) Compare High Level Voltages.

Is CMOS VOH greater than or equal to TTL VIH ?
YES 4.9 V ∃ 2.0 V

Step 2) Compare Low Level Voltages.
 Is CMOS VOL less than or equal to TTL VIL ?

YES 0.1 V # 0.8 V

Step 3) Compare High Level Currents.
 Is CMOS IOH greater than or equal to TTL IIH ?

YES 500 x 10-6 A ∃ 40 x 10-6 A, and M = 12.5.
Therefore, one output can source current for 12 inputs.

Step 4) Compare Low Level Currents.
 Is CMOS IOL greater than or equal to TTL IIL ?
 NO 0.4 x 10-3 A ∃ 1.6 x 10-3 A. and N = 0.25.

Therefore, one output can not sink current for one input.

Step 5) Have all four conditions been met?
 No, The CMOS Output Cannot Pull The TTL Input Low.

3.4. Device Outputs
When designing computers it is often desirable to have multiple digital logic device

outputs connected to the same conductive path. This minimizes both the amount of
interconnecting wires between integrated circuit pins and the complexity of the digital
circuits. Circuit paths that have more than one output connected to them and are used to pass
binary information are classified as buses. Only one output may have access or "talk" on the
bus at a time.

Standard logic devices have transistor switch outputs as depicted in Figure 3.9a. In the
‘1’ state, the output sources current, with current flowing from the output to the connecting
inputs. This drives the inputs to the high or ‘1’ state. In the logic ‘0’ state, the output sinks
current, such that current flows from the connecting inputs into the output. This will drive all
inputs to the ‘0’ state. This standard configuration is often referred to as a totem-pole output.
Totem-pole outputs cannot be connected together to form buses. When the output states of
two connected totem-pole outputs are different, the low state output may damage the high
state output. This problem is remedied by using either tri- state or open-collector output
gates.

 Chapter 3 Integrated Circuits

 Page 35 Copyright  2000 R.M. Laurie

Figure 3.9 Switch Analogies for Output Devices
 a) Standard Gate Output

 b) Tri-state Gate Output

 c) Open-Collector Gate Output

3.4.1. Tri-state Gates
The tri-state gate has transistor switch outputs, which can be modeled as a 3-position

switch as depicted in Figure 3.9b. Each position of the switch represents a different state
(either 0, 1, or Disconnect). Notice that an additional input is provided on the top of the gate,
which is called the control input. The control input is used to selectively disconnect or drive
the output. The truth table for a tri-state NAND gate is shown in Figure 3.10a. When the
Control input is 1, the gate functions normally as a 2-input NAND gate. However, when the
Control input is 0, the gate output is effectively disconnected. This disconnect state is often
referred to as the high-impedance state (High-Z State).

Figure 3.10b illustrates a tri-state buffer with a negative logic control input. The tri-state
buffer is symbolized as a triangle pointing to the output (similar to the NOT gate without the
inversion circle). As described by the truth table, the output of the tri-state gate is
disconnected when the control input is in the 1 state. When the control input is in the 0 state,
the output state is the same value as the input A.

When a bus is constructed using tri-state gates, only one tri-state gate can be active at a
time. Inactive outputs must be disconnected from the bus by forcing their control inputs to
the inactive state.

Chapter 3 Integrated Circuits

Copyright  2000 R.M. Laurie Page 36

Figure 3.10 Tri-state Gate Truth Table and Symbolic Representation
 (a)

 (b)

3.4.2. Open-Collector Gates
Open-collector gates function as standard gates, but have two possible output values

either Disconnect or the 0 state. The output of an open-collector gate contains only one
switching transistor which switches the output to ground as shown in Figure 3.9c. Current
cannot flow out of an open-collector output in the Disconnect state; therefore, IOH = 0 and
the output is effectively disconnected. When the output is in the 0 state, the output will sink
current to ground and all connecting inputs will be driven to the 0 state. The truth tables for
open-collector gates have the same form as standard gates; however, when the output is 1 for
a standard gate it will be disconnected for an open-collector gate. The truth table for an
open-collector buffer is shown in Figure 3.11a.

Since the output of an open collector gate cannot source current in the 1 state (as a
standard output), an external voltage source must be connected to the output. This voltage
source is required to drive any connecting inputs to a 1 state voltage level (i.e. 2 to 5 volts).
A pull-up resistor must be connected between the voltage source (i.e. +5V) and the open-
collector output. The pull-up resistor is used to limit the current entering the output in the
low state.

Illustrated in Figure 3.11b is a simple circuit composed two buffers, which are used to
generate an output bus F. The circuit has two buffers with open-collector outputs and one
pull-up resistor. If either or both inputs A and B are in the 0 state, then at least one open-
collector output will sink current and drive output bus F to the 0 state. Only when both
inputs A and B are in the 1 state, will no current flow and output F will be pulled up to the 1
state. The truth table for this circuit is shown in Figure 3.11b. As depicted by the truth table,
this circuit is often called a wire-AND circuit.

 Chapter 3 Integrated Circuits

 Page 37 Copyright  2000 R.M. Laurie

Open-collector gates can be used to construct buses, with more than one output
connected to the same conductive path. Inactive open-collector outputs must remain in the
disconnect state while the active output transmits its digital signal. In Figure 3.11b, if the
buffer connected to Input A were active and the other buffer inactive, then Input B must be
in the 1 state while Input A transmits data.

Figure 3.11 Open-Collector Buffers Configured as Wire-AND Circuit

3.4.3. Drivers
Drivers are used as an output device when the application requires current and voltages

that exceed those available with standard logic devices. Drivers are used as output devices
for applications such as lights, displays, and relays.

High voltage open-collector output gates are often used as drivers for such applications
as turning on light emitting diodes (LED). These gates will sink more current than will
standard gates, because their output transistors are designed to handle more current.

When using drivers, it is important to examine both the input compatibility and the
output rating for both voltage and currents.

Chapter 3 Integrated Circuits

Copyright  2000 R.M. Laurie Page 38

PPrroobblleemm SSeett
1. Using the integrated circuits shown, draw lines between the pins of the DIPs to construct

a digital circuit which will implement the Boolean expression

X = A + B C + D for Output X based on inputs A, B, C, and D. The power and ground

connections are drawn.

2. Using the integrated circuits shown in Figure 3.2, draw circuits for the following Boolean

expressions.

a) A + B C

b) A (B + C) D

c) A B C + B C + A

d) (A ⊕ B) ⊕ C

3. A digital circuit is designed in which power consumption is minimized. Which one of the
integrated circuit technologies should be considered first?

4. A digital circuit is designed which requires very high speed switching. Which

integrated circuit technologies should be considered first?

5. A VLSI digital circuit is designed which requires a very high density of circuitry to

be placed on a single silicon chip. Which integrated circuit technologies should
be considered first?

 Chapter 3 Integrated Circuits

 Page 39 Copyright  2000 R.M. Laurie

6. Using the table of Figure 3.8, determine if an NMOS output is compatible with a

TTL input. If they are compatible, determine how many TTL inputs can be driven
by a single NMOS output.

7. Determine how many CMOS inputs can be driven by a single CMOS output.

8. Draw the logic gate symbol and truth table for the following tri-state gates.

a) Tri-state Inverter
b) Tri-state 2-Input OR Gate
c) Tri-state 3-Input NAND Gate

9. Draw the truth table for the following circuit which uses Inverters with open
collector outputs. Why is this circuit called a Wire-ORed circuit?

Chapter 4 Sequential Logic

Copyright  2000 R.M. Laurie Page 40

CChhaapptteerr 44.. SSeeqquueennttiiaall LLooggiicc

Sequential logic devices are used to construct sequential circuits such as computer
memories, counters, frequency dividers, and data converters. Sequential circuits differ from
combinational circuits because their outputs are determined not only by the current state of
the inputs but also by past behavior.

Timing diagrams describe the state of input and output signals of a digital circuit as
they vary with time. Timing diagrams are used to analyze sequential circuits because
sequential logic devices are a function of not only the current state of the inputs, but also the
past behavior of the output. Figure 4.1 illustrates a timing diagram for a sequential circuit
with two inputs (A and B) and one output (Q). Time is located on the horizontal axis while
the state of the signal is shown on the vertical axis. The logic variables (A, B, and Q) are
represented as waveforms in either the 1 or 0 state as they vary in time.

Figure 4.1 Timing Diagram

Most sequential logic circuits utilize a clock signal to synchronize components.

Typically, clock signals are either a periodic square wave (Input A of Figure 4.1) or a
periodic pulse waveform (Input B of Figure 4.1), for which the period is constant and the
transition time between states is minimized. The period of the waveform is the time required
to complete one full cycle. In Figure 4.1, Input A has a period of 1.0 µSeconds and Input B
has a period of 2.0 µSeconds. Often the clock signal is specified not by its period, but by its
frequency. Frequency is specified in units of cycles per second, which is usually called Hertz
(Hz) after the 19th century physicist Heinrich Rudolf Hertz. Computer circuits have very
high clock frequencies, so the terms Kilo-Hertz (KHz), Mega-Hertz (MHz), and Giga-Hertz
(GHz) are used to specify units of thousand cycles per second, million cycles per second,
and billion cycles per second respectively.

Chapter 4 Sequential Logic

 Page 41 Copyright  2000 R.M. Laurie

The frequency of the waveform is found by taking the reciprocal of its period. The
frequencies of inputs A and B are determined to be 1.0 MHz and 500 KHz, as shown below:

4.1. Sequential Logic Devices
Sequential logic devices utilize an input signal called a clock input to trigger themselves

at specific moments in time. The output of the device can only change when a trigger
condition occurs. Trigger conditions can be either level sensitive or edge sensitive.

Level sensitive sequential components are called latches, and trigger in the one state.
The D-latch is an example of a level triggered device.

Edge sensitive sequential components are called flip-flops. Three flip-flops will be
discussed: J-K, T, and D flip-flops. Flip-flops are either positive or negative edge triggered.
A positive edge occurs when the clock signal changes from the ‘0’ to ‘1’ state, as shown in
Figure 4.1 for Input A at times 0.5, 1.5, 2.5, 3.5, and 4.5 microseconds. A negative edge
occurs when the clock changes from the ‘1’ to ‘0’ state, as shown in Figure 4.1 for Input A at
times 1.0, 2.0, 3.0, and 4.0 microseconds. Flip-flop inputs are read at the instant a transition
edge occurs. The output may change state the instant after the transition edge occurs.

4.1.1. J-K Flip-Flop
The J-K flip-flop has three inputs (J, K, and C) and two outputs (Q and Q), as shown in

Figure 4.2a. The output Q is always the opposite state of output Q.
Transition tables describe what happens to the latch or flip-flop output after a clock

trigger condition occurs. An example of a transition table is shown if Figure 4.2b. The output
after a clock trigger condition (Q+) is a function of both the current state of the inputs at that
instant and the state of the output before the trigger condition occurs (Q−−−−).

The transition table looks like a truth table, except the output Q is a function of both the
current state of the inputs and the past state of the output. The output column of the
transition table, denoted by Q+, is the value of the output (Q) after some instant in time. The
symbol Q−−−− denotes the output value before that instant in time. The output can only change
at the instant after a clock trigger condition has occurred; otherwise, the other inputs are
ignored and the output cannot change.

The transition table for the J-K flip-flop is shown in Figure 4.2b. The J and K inputs are
examined the instant the clock trigger edge occurs, in order to determine the state of output
Q the instant after the clock transition edge.

When the J and K inputs are both ‘0’ (at a clock trigger edge) the output Q remains
unchanged. If J=0 and K=1, then output Q is reset to ‘0’. If J=1 and K=0, then output Q is set
to one. If both J and K inputs are in a one state at the clock trigger edge, then output Q will
change to the opposite state.

This condition is described by the last row of the transition table. The symbol Q−−−− of the
output column signifies that if the output Q was a one before the trigger edge, it becomes a
‘0’ after; and a ‘0’ before the trigger edge results in a one after. This is often described as an
output toggle.

Chapter 4 Sequential Logic

Copyright  2000 R.M. Laurie Page 42

Figure 4.2 J-K Flip-Flop (- Edge Triggered)
a) Device Symbol b) Transition Table

J-K flip-flops come in either negative edge or positive edge triggered varieties. If the

flip-flop is positive edge triggered, it is denoted by the symbol "+FF". If the flip-flop is
negative edge triggered, it is denoted by the symbol "-FF". A timing diagram for a negative
edge triggered J-K flip-flop is illustrated in Figure 4.3. As with logic gates, some time delay
does exist between the time when the inputs are read and the time the output changes state.
This is called the propagation delay of the flip-flop.

Figure 4.3 Timing Diagram for the J-K Flip-Flop

4.1.2. T Flip-Flop
The T flip-flop (Toggle flip-flop) has one input (T) and two outputs (Q and Q), as

shown by its device symbol in Figure 4.4b. It can be constructed using a J-K flip-flop with
both the J and K inputs connected to logic ‘1’ state and using the clock input as the T input.

T flip-flops are either positive or negative edge triggered. The output (Q) will toggle
states only when a trigger edge appears on the T input. If the output (Q) was ‘1’, it becomes
‘0’, and if it was a ‘0’, it becomes ‘1’.

Otherwise, when the trigger edge is not present, the output state will not change.

Chapter 4 Sequential Logic

 Page 43 Copyright  2000 R.M. Laurie

The timing diagram of Figure 4.5 illustrates the operation of a positive edge triggered T
flip-flop for a non-periodic waveform. When the T input of a T flip-flop is connected to a
periodic square wave, it operates as a divide by 2 frequency divider with the output
waveform being half the frequency of the input.

Figure 4.4 The T Flip-Flop (+Edge Triggered)

Figure 4.5 Timing Diagram for a Positive Edge Triggered T Flip-Flop

4.1.3. D Flip-Flop and Latch
The D flip-flop (Data flip-flop) can be used to store one bit of data. It is constructed by

using a J-K flip-flop with an inverter connected between inputs J and K, as illustrated in
Figure 4.6a. The D flip-flop has a data input (D), a clock input (C), and two outputs (Q and
Q). When a trigger edge occurs on the clock input, the state of output Q will become the
state of input D. Therefore, the state of the D input is stored at output Q until the next clock
trigger edge occurs. This relationship is depicted in the transition table of Figure 4.6c.
Timing diagrams for both positive edge and negative edge triggered D flip-flops are
illustrated in Figure 4.7.

D latches differs from a D flip-flops in that they are level triggered. The transition table
for the D latch is the same as the D flip-flop. When the clock input is in the 1 state the Q
output of a D latch will be the same state as the D input. When the clock input is in the 0
state the data at the output will be "latched" and will not change. A timing diagram for the D
latch is illustrated in the last diagram of Figure 4.7.

4.1.4. Preset And Clear Inputs
Flip-flops commonly have preset and clear inputs, as illustrated in Figure 4.8. These

inputs are shown on the top and bottom of the flip-flop and are symbolized with an inversion
circle by the labeled input. Sometimes these inputs are abbreviated such that R = Clear and S

Chapter 4 Sequential Logic

Copyright  2000 R.M. Laurie Page 44

= Preset. Preset and clear inputs are unclocked negative logic inputs and take priority over all
other inputs.

When the Preset or S input is in the ‘0’ state, the output Q is set to ‘1’. When the Clear
or R input is in the ‘0’ state, the output Q is cleared to ‘0’. At no time should both the clear
and preset inputs be activated simultaneously, as the output state is then undefined.

Figure 4.6 D Flip-Flop (- Edge Triggered)
a) Derived Logic Circuit b) Device Symbol c) Transition Table

Figure 4.7 Timing Diagram for the D Flip-Flop and D Latch

Figure 4.8 J-K Flip-Flop with Preset and Clear Inputs

Chapter 4 Sequential Logic

 Page 45 Copyright  2000 R.M. Laurie

4.2. Timing Diagram Construction For Sequential Circuits
Timing diagrams have been constructed for single flip-flops and latches in Figures 4.1

through 4.7. Given timing diagrams for the inputs, the output timing diagram can be drawn
for any sequential logic device. The procedure for making a timing diagram is outlined
below:

Step 1: Determine the type of sequential logic device, including whether it is level
triggered, or positive or negative edge triggered.

Step 2: Mark triggered clock edges (flip-flop) or trigger area (latches) where a transition
of output may occur.

Step 3: Determine the state of all inputs to the sequential logic device just before a
trigger condition occurs.

Step 4: Use the input values and the transition table for the given sequential logic
device to determine the value of output Q after the trigger condition. Mark the state of
the outputs on the timing diagram, until the next transition of the output can occur. Go
back to Step 3.

Note: Q−−−− = value of Q before transition. Q+ = value of Q after transition.

This same procedure can be applied to construction of timing diagrams for sequential

circuits with more than one sequential device. The procedure is applied by recognizing that
the outputs of some sequential devices are connected to the inputs of other sequential
devices. Therefore, after the timing diagram for an output of one device has been found, it
may be used as an input to construct the timing diagram for the connecting device. This
process is similar to the process used to evaluate combinational circuits using truth tables.

Verify the timing diagrams for single sequential logic devices of Figures 4.1 through
4.7. Then examine and verify the timing diagrams for the sequential circuits discussed in
Section 4.3.

4.3. Sequential Circuits
Sequential circuits are constructed by interconnecting flip-flops, latches, and logic

gates. Sequential circuits are used to perform many operations required by a computer.
Discussed in this section are several simple sequential circuits that are found in computer
hardware. These sequential circuits include frequency dividers, counters, data registers, shift
registers, and data converters.

4.3.1. Frequency Dividers and Counters
Frequency divider circuits are used to generate an output frequency that is a fraction of

the input frequency for a periodic waveform. Either T flip-flops or J-K flip-flops can be used
to construct frequency divider circuits. When flip-flops are used to make a frequency divider
circuit, the frequency of the input is divided by an integer value to generate the output
frequency.

Chapter 4 Sequential Logic

Copyright  2000 R.M. Laurie Page 46

The circuit of Figure 4.9 is a divide-by-eight frequency divider. It is constructed using
three T flip-flops configured as shown. Each T flip-flop will generate, on its output, a divide-
by-two operation of the input frequency. Therefore, a circuit in the configuration of Figure
4.9, with n T flip-flops will be a divide-by-2n frequency divider. This circuit could also be
constructed using J-K flip-flops with both the J and K inputs connected to a logic ‘1’ state.

Figure 4.9 Divide-by-Eight Frequency Divider or Three Bit Binary Counter

J-K flip-flops with clear inputs are used to construct the divide-by-ten frequency divider

of Figure 4.10. Note that the output Q will complete one full period after ten periods of the
input signal. The NAND gate is used to reset the circuit after ten input cycles. The
propagation delays for both the logic gate and the flip-flops are relatively small when
compared with the input frequency. Therefore, after every ten clock cycles of the input, the
output of the NAND gate pulses from the 1 to 0 and back to 1 state.

A frequency divider circuit, that is configured like Figure 4.9, can be used as a binary
counter by accessing the output of each flip-flop. The divide-by-eight frequency divider
circuit of Figure 4.9 is also a 3-bit binary counter. Output QA represents the least significant
bit, QB the next most significant bit, and QC the most significant bit of a three bit binary
number. Notice on the timing diagram of Figure 4.9, when the outputs are read vertically
after each negative edge, the output states (QA, QB, and QC) represent a binary counting
sequence (000 through 111). This three bit binary counter has eight distinct states of its three
outputs. The circuit of Figure 4.10 counts in binary from zero to nine. The counter has ten
distinct states of its outputs and for this reason it is called a decade counter.

Chapter 4 Sequential Logic

 Page 47 Copyright  2000 R.M. Laurie

Figure 4.10 Divide-by-Ten Frequency Divider or Decade Counter

4.3.2. Data Registers
Data registers are used to store and retrieve binary data. Data registers are constructed

using D-latches, as illustrated in Figure 4.11. A 4-bit data register can be used to store and
retrieve four bits of data from a bi-directional data bus. In a store or write operation, data
present on the data bus is stored in the D-latches by applying a trigger pulse at the clock
inputs. In a retrieve or read operation, data is gated from the outputs of the latches through
the tri-state buffers to the data bus. The read operation uses the bi-directional data bus as
register outputs, and the write operation uses the data bus as register inputs.

Chapter 4 Sequential Logic

Copyright  2000 R.M. Laurie Page 48

Figure 4.11 Four Bit Data Register

4.3.3. Shift Registers
Shift Registers are a class of data registers that are used to shift a group of bits to the

left or right. Shown in Figure 4.12 is a shift register, which will shift a group of four bits to
the right. J-K flip-flops are used to construct this shift register such that their J and K inputs
will always be opposite in state. Since this is the same configuration used to construct a D
flip-flop, this shift register could also be constructed using D flip-flops.

The operation of the shift register can be best understood by examining and verifying
the shift register timing diagram of Figure 4.12. The Reset input is used to initially clear all
flip-flop outputs. The input value is then stored in the left-most flip-flop while its previous
output value is stored in the next flip-flop to the right. The timing diagrams for the outputs
illustrate the data shifting properties of the shift register. Notice the data at output QD is the
same as the data on the input; however, it will be delayed close to four clock cycles. Shift
registers can be used as a delay device with the maximum delay time equal to the number of
flip-flops multiplied by the clock period.

The clock inputs of every flip-flop of the shift register are tied together so the flip-flops
trigger at exactly the same time. Sequential circuits with all flip-flop clock inputs connected
to one clock source are called synchronous circuits. With synchronous circuits, the clock
input is used to synchronize the flip-flops to perform the desired function. Figures 4.11 and
4.12 are considered synchronous circuits. Sequential circuits with the clock signals not
coming from a common source are called asynchronous circuits. The counter circuits of
Figures 4.9 and 4.10 are examples of asynchronous circuits.

Chapter 4 Sequential Logic

 Page 49 Copyright  2000 R.M. Laurie

Figure 4.12 Four Bit Shift Register

4.3.4. Data Converters
Data can be transmitted one bit at a time or as a group of bits. When data is transmitted

one bit at a time it is called serial data. Only one wire is required to transmit serial data.
When several bits are transmitted simultaneously through parallel conductive paths, it is
called parallel data transmission. A digital device that is used to perform conversions
between parallel and serial data formats is called a data converter.

Chapter 4 Sequential Logic

Copyright  2000 R.M. Laurie Page 50

Generally, the number of bits per second of data that can be transmitted on a single
conductive path is constrained by its conductive media (e.g. wire, printed circuit path, and
fiber optic cable). When the required data transmission rate exceeds the maximum bit rate
for the media, then parallel data transmission must be used instead of serial data
transmission. Four bit parallel data can transmit four times as many bits per second as serial
data for the same speed media. Of course, four parallel conductive paths would be required
for parallel data, while only one is required for serial data transmission.

4.3.4.1. Serial to Parallel Data Converter
The shift register of Figure 4.12 can be used as a serial to parallel converter. The single

input shown is used as the serial input. The four flip-flop outputs are used as the four parallel
outputs of the data converter. To read the parallel data properly, the data converter outputs
must be read at one quarter the frequency at which the data is loaded into the serial input.
Data should only be read when the outputs QA, QB, QC, and QD are stable. This can be
accomplished by reading the data on the fifth, ninth, and thirteenth positive edges of the
clock.

4.3.4.2. Parallel to Serial Data Converter
A 4-bit parallel to serial data converter can be constructed using four D flip-flops and

four NAND gates as shown in Figure 4.13. The serial data is transmitted at four times the
frequency at which the parallel data is loaded. This can be verified by comparing the Clock
input waveform with the Load input waveform.

The 4-bit parallel to serial converter is initially reset to generate a ‘0’ state at the outputs
of all flip-flops. The Load input is then pulsed high to load the flip-flops with the data from
the parallel inputs (D3 through D0).

The Clock input to this synchronous circuit is a periodic pulse waveform, which is used
to synchronize the parallel to serial data transfer. The flip-flops are positive edge triggered.
Serial data should be read at the negative edges of the Clock input because the Serial output
is stable at the negative edges.

4.4. Sequential Integrated Circuits
Flip-Flops and latches are manufactured as SSI circuit chips. The sequential circuits

discussed in Section 4.4 are also available as MSI circuits. When designing a sequential
circuit it is best to first determine which sequential functions can be performed using MSI
chips and then use individual flip-flops (SSI chips) to complete the design. Descriptions of
these integrated circuits can be found in a manufacturers data book, or downloaded from the
Internet as a PDF document (e.g. http://www.ti.com, http://www.national.com)

Chapter 4 Sequential Logic

 Page 51 Copyright  2000 R.M. Laurie

Figure 4.13 Parallel to Serial Data Converter

Chapter 4 Sequential Logic

Copyright  2000 R.M. Laurie Page 52

PPrroobblleemm SSeett
1) Complete the timing diagrams below for the following sequential logic

devices. All devices are initially cleared at t=0.
a) D Latch (1 level triggered)

b) D Flip-Flop (negative edge triggered)

Chapter 4 Sequential Logic

 Page 53 Copyright  2000 R.M. Laurie

2) Complete the timing diagrams below for the following sequential logic
devices. All devices are initially cleared at t=0.
a) J-K Flip-Flop (negative edge triggered)

b) J-K Flip-Flop (positive edge triggered)

c) J-K Flip-Flop for output Q (positive edge triggered)

d) J-K Flip-Flop with Preset and Clear Inputs (negative edge

triggered)

Chapter 4 Sequential Logic

Copyright  2000 R.M. Laurie Page 54

3) Complete the timing diagram below for outputs Q1, Q2, and Q3. The
Flip-Flops are negative edge triggered and initially cleared at t=0.

Chapter 4 Sequential Logic

 Page 55 Copyright  2000 R.M. Laurie

4) Complete the timing diagram below for outputs Q1, Q2, and Q3. The
Flip-Flops are negative edge triggered D Flip-Flops and initially cleared
at t=0.

Chapter 4 Sequential Logic

Copyright  2000 R.M. Laurie Page 56

5) The J-K Flip-Flops are negative edge triggered and are initially reset at
t=0. Draw the waveforms for QA, QB, and QC. Show this is a divide-by-
six frequency divider. Is this a synchronous or asynchronous circuit?

6) Use the divide-by-6 frequency divider of Problem 5 to design a divide-

by-twelve frequency divider. Draw the circuit diagram for this
frequency divider.

Chapter 5 Number Systems And Codes

Copyright  2000 R.M. Laurie Page 57

CChhaapptteerr 55.. NNuummbbeerr SSyysstteemmss AAnndd CCooddeess

The decimal number system (base 10) has become the standard number system used by
people for counting and mathematical operations. The base ten system is used by most
cultures primarily because people have 10 fingers. Each finger is used to represent one of ten
possible values that a digit can assume.

Computers do not have 10 fingers. However, they are made up of electronic switches
that represent Boolean variables in either a 1 or 0 state. For this reason, the binary (base 2)
number system is used to represent the states of Boolean variables. A single binary digit is
called a bit, which is in either a 1 or 0 state. A group of eight bits is called a byte. A half
byte, which is a set of four bits, is often called a nibble.

Discussed in this chapter are the data formats used by computers to represent numbers
and alphanumeric data. Also, binary addition is presented for both signed and unsigned
numbers. The base of a number is denoted in this chapter by the subscript 2 for binary, 10
for decimal, and 16 for hexadecimal (base 16). In this text, commas are used with binary
numbers to separate groups of four bits, which make the number more readable.

5.1. Unsigned Binary Numbers
Binary numbers are base two numbers, which can be used to represent various integer

quantities. The base two number system operates almost the same way as the decimal
system; However, only two symbols (0 and 1) exist for each bit while ten symbols (0
through 9) exist for each digit of the decimal system.

Figure 5.1 compares the decimal and binary number systems. Both number systems are
right justified. That is, the least significant bit (LSB) of a binary number is always the right-
most bit, just as the least significant digit of a decimal number is the right-most digit. The
next significant bit is always a power of two higher than the previous bit. The most
significant bit (MSB) represents the highest power of two required for representing a number
and is the left-most bit.

5.1.1. Binary to Decimal Conversion
The four bit binary number of Figure 5.1 is easily converted to decimal notation.

Simply sum the powers of two for all bits with a 1. Bits with a 0 are not added to this sum.
Therefore, the conversion of 10112 to decimal is performed by the sum:

(1)23 + (0)22 + (1)21 + (1)20 = 8 + 2 + 1 = 1110

Generally, the minimum data word length for microcomputers is 8 bits or one byte. To

convert any binary number to decimal, determine the powers of two corresponding to each

 Chapter 5 Number Systems And Codes

 Page 58 Copyright  2000 R.M. Laurie

bit with a value of 1, and add up the appropriate magnitudes representing the power of two
for each bit. For an eight-bit number represented by the eight bits b7 b6 b5 b4 b3 b2 b1 b0 the
least significant bit, b0, represents the 20 or the 1's place and the most significant bit, b7,
represents the 27 or the 128's place. Conversion of an eight-bit number is represented by the
following equation:

b727 + b626 + b525 + b424 + b323 + b222 + b121 + b020

= b7 (128) + b6 (64) + b5(32) + b4 (16) + b3 (8) + b2 (4) + b1 (2) + b0 (1)

The largest number that can be represented by eight bits would have a 1 for all eight

bits b7 through b0. This corresponds to 1111,11112 = 25510. The binary number 0000,00002
represent decimal zero. Therefore, eight bits may be used to represent any integer decimal
number within the range of 0 to 255 inclusive. Additional bits are required to represent
decimal integers greater than 255.

Figure 5.1 Decimal and Binary Number Systems

5.1.2. Decimal to Binary Conversion
To convert a decimal number to a binary number is more tedious than binary to decimal

conversion. Tables such as Figure 5.2 are often used to facilitate these conversions. As an
alternative to tables, a direct mathematical procedure is shown in Example 5.1. Consider the
decimal number 19. Conversion is performed using successive divisions by 2. First 19 is
divided by 2 which will generate a quotient of 9 and remainder of 1. Next divide the
preceding quotient 9 by 2, which will generate the next quotient of 4 and remainder of 1.

Chapter 5 Number Systems And Codes

Copyright  2000 R.M. Laurie Page 59

Example 5.1: Convert 19 to Binary
 Q R
 19 ÷ 2 = 9 1 (LSB Least Significant Bit)
 9 ÷ 2 = 4 1
 4 ÷ 2 = 2 0
 2 ÷ 2 = 1 0
 1 ÷ 2 = 0 1 (MSB Most Significant Bit)

Therefore 1910 = 100112 = 0001,00112

Continue the division by 2 until a quotient of 0 exists. The binary equivalent is
determined by examining the remainder column and taking the final remainder as the most
significant bit and the first remainder as the least significant bit. Therefore, 19 decimal is
represented by the binary number 10011. Binary numbers are often zero filled to eight bits
resulting in 0001,0011 to represent decimal 19.

Figure 5.2 Unsigned Decimal to Binary Conversions

5.2. Signed Binary Numbers
Signed binary number representations are used to represent both positive and negative

numbers. They also allow signed binary addition and subtraction operations, which may
yield negative results.

 Chapter 5 Number Systems And Codes

 Page 60 Copyright  2000 R.M. Laurie

To utilize the same full adder circuit for both signed and unsigned binary numbers the
2's complement data format is utilized to represent signed binary numbers. When referring to
signed binary numbers, the 2's complement representation will always be used in this text.

An abbreviated table of 8-bit 2's complement numbers is shown in Figure 5.3. For
positive numbers within the range of 12710 through 010, the 2's complement representation is
identical to the unsigned binary format.

However, for negative numbers a conversion procedure is required. Conversion is
performed for 2's complement negative numbers using the following three steps:

Step 1) Determine the unsigned binary number magnitude
Step 2) Complement (invert) the state of each bit
Step 3) Add 1 to the result

Figure 5.3 Some Signed Binary to Decimal Conversions

Chapter 5 Number Systems And Codes

Copyright  2000 R.M. Laurie Page 61

Example 5.2 illustrates this 2's complement conversion procedure using four examples.
This procedure is only used for converting negative numbers to 2's complement form. Again,
positive numbers will have the same form for both unsigned binary and 2's complement
representations.

This same three-step procedure can also be used to change the sign of the number. This
is useful when converting a negative 2's complement number to decimal and for the
subtraction operation. Subtraction can be performed on 2's complement numbers by first
performing the three-step 2's complement procedure described to change the sign of the
subtrahend; Then, add the two numbers together. By using this procedure to perform
subtraction, no additional subtraction hardware is required to perform the subtraction
operation on two 2's complement numbers.

The range of 8-bit 2’s complement numbers is +127 to -128 inclusive, as shown in
Figure 5.3. The most significant bit is the sign bit. If b7 = 0, the number is positive, and if b7
= 1 the number is negative. Note that only one value exists for zero in 2's complement
numbers, and zero is considered a positive number. Therefore, the highest value of positive
numbers is 127 instead of 128 as one might expect.

Example 5.2: The 2's Complement Representation

5.3. Binary Addition
Binary addition can be easily performed by hand just as decimal addition. First, line up

the bits in columns as shown in Example 5.3. Then add up the bits of each column. When the
sum for each bit exceeds 1, a carry is generated into the next significant bit. The carry out of
the most significant bit represents the carry flag. If this carry flag is in the 1 state and the
numbers are unsigned binary, then the sum exceeds what can be shown with 8 bits. When a
carry out exists from bit 6 with no carry out from bit 7, or vice versa, an improper sign
change has occurred for the sum in 2's complement form and an overflow condition exists.
When this overflow condition is true the resulting 2's complement sum is invalid.

Addition is performed using the same method for both unsigned and signed 2's
complement numbers. The only differences are the conditions dictating the validity of the
sums. Therefore, it is up to the computer programmer to keep track of whether the data is in
signed or unsigned formats and to check the appropriate carry or overflow conditions to
determine if the sums are valid.

 Chapter 5 Number Systems And Codes

 Page 62 Copyright  2000 R.M. Laurie

Binary addition of both unsigned and 2's complement signed numbers can be performed
using the full adder hardware of Figure 5.4. This figure is similar to Figure 2.18 with the
exception that eight full adder circuits are cascaded together so that addition can be
performed on 8-bit data and both a Carry flag (C) and Overflow flag (V) are available for
examination. The C and V flags are often referred to as the carry and overflow condition
codes in computer literature.

The carry flag is actually the carry out from the full adder of the most significant bit.
The carry flag is considered only when performing unsigned binary addition. When the carry
flag is a ‘0’ it specifies that the resulting unsigned binary sum is within the range of valid
binary numbers 0 through 255. A carry flag of one specifies that the resulting sum is greater
than 255 and the result is not valid. The overflow flag is meaningless when performing
unsigned binary addition.

Addition of signed 2's complement numbers is also performed using the circuitry of
Figure 5.4. When performing 2's complement arithmetic the carry flag is meaningless and
only the overflow flag specifies whether the resulting sum is within the valid range from -
128 through +127. The overflow flag is generated by exclusive-OR'ing the carry out from bit
7 with the carry out of bit 6. If one, but not both, of these carry outs are a ‘1’ it means that an
improper sign change has occurred and the resulting sum is not valid. Therefore, if the
overflow flag is 0, the 2's complement sum is valid; An overflow flag of 1 signifies that the
sum is out of range (-128 through +127).

Example 5.3: Binary Addition

Chapter 5 Number Systems And Codes

Copyright  2000 R.M. Laurie Page 63

Figure 5.4 8-Bit Adder Circuit With Overflow and Carry Flags

5.4. Binary Number Magnitude
The number of bits used for the data word restricts the magnitude of decimal numbers

that can be represented by binary numbers. Binary numbers with eight bits can represent
unsigned numbers in the range from 255 through 0, or signed numbers in the range from
+127 through -128. Numbers outside of these ranges cannot be represented unless additional
bits are used to increase the data word size.

Binary numbers can represent a maximum of 2n decimal numbers, where n is the
number of bits of the data word. For unsigned numbers the range begins at zero. For signed
binary numbers the center of the range is zero.

Consider the case when the data word size is increased from one byte to two bytes (16
bits). A two-byte binary number can be used to represent 65,536 different decimal numbers.
For unsigned binary numbers, 16 bits would represent decimal numbers in the range of
65,535 to 0. The signed 2's complement range is from +32,767 to -32,768. Once again, zero
is considered a positive number. Therefore, the range of negative numbers appears to be one
more than positive numbers.

Computers have a standard word size in which all data is represented as some multiple
of eight bits (i.e. 8, 16, 32, 64).

 Chapter 5 Number Systems And Codes

 Page 64 Copyright  2000 R.M. Laurie

5.5. Binary Coded Decimal Representation
People prefer to work with decimal numbers for both data entry and display

applications. A direct binary representation of decimal numbers is preferable to the
conversion methods of Section 5.1. A binary data format used for direct representation of
decimal digits is called binary coded decimal, usually abbreviated BCD. The standard format
used to represent BCD numbers is shown in Figure 5.5. This BCD format uses a group of
four bits to represent one decimal digit. The four bits are weighted such that each bit
corresponds to the values 23, 22, 21, 20 or 8, 4, 2, 1. Only binary numbers 0000 through 1001
are valid BCD codes. Any four bits with a value greater than 1001 are considered invalid.
Therefore, only ten out of the sixteen possible combinations of four bits are considered valid
BCD codes. Since each decimal digit is encoded into four bits, two decimal digits can be
represented in one byte. This is called often called packed BCD and will be the standard
format used to represent BCD numbers in this text.

Although BCD formats are good for human interfaces they are very inefficient for data
storage and processing. A two-byte BCD format can only represent decimal numbers in the
range 9999 to 0. A two byte unsigned binary format will represent numbers in the range
65,535 to 0. The adder circuit of Figure 5.4 will not give direct results when adding BCD
formatted numbers. Additional logic circuits are required to perform BCD addition.

The Grey Code of Figure 5.5 is an example of a non-weighted binary format used to
represent decimal numbers. Grey code is often used for sensors with digital outputs, such as
shaft encoders. A binary code exists for each decimal digit; however, the bits do not
represent powers of two. A direct conversion algorithm does not exist for Grey code as with
the standard BCD data. Therefore, a look-up table, such as the one in Figure 5.5, must be
used.

Figure 5.5 Binary Coded Decimal Codes

Chapter 5 Number Systems And Codes

Copyright  2000 R.M. Laurie Page 65

5.6. Floating Point Representations
Signed integer numbers are represented using the 2's complement format of Section 5.2.

Integer numbers are whole numbers. An alternate approach is required to represent real
numbers.

The floating-point representation is used to represent real numbers in much the same
way as scientific notation. Consider the number -0.0004772, which can be represented in
scientific notation as -0.4772 x 10-3. The mantissa is normalized to be a number between
±0.9999 and ±0.1000. The exponent -3 is a signed integer quantity representing the power of
ten that the mantissa is multiplied. The actual bit format used to represent floating point
numbers varies dependent on the data word size of the computer.

Figure 5.6 shows a typical 32-bit format used to represent floating point numbers. For
example both the mantissa and exponent can be represented using 2’s complement numbers.
In both cases a sign bit of 0 represents a positive number and a sign bit of 1 represents a
negative number. The number of bits in the exponent determines the range of powers of ten.
An 8 bit exponent can represent powers of ten from 10+127 to 10-128. A 24-bit mantissa can
represent signed decimal numbers of six significant digits for the range +999,999 to
!999,999.

If more significant digits are required for an application, allocating more bits to the
mantissa can increase the mantissa size. Most computer programming languages allow a
higher precision (more significant digits) floating point number representation that is often
called double precision floating point numbers.

Figure 5.6 Floating Point Number Representation

5.7. Hexadecimal Numbers
Representing eight bits of data as a string of 1's and 0's can be tedious.
The hexadecimal number system is used to simplify data representation by encoding 4

bits as one symbol. Hexadecimal numbers comprise the base 16 number system. The
hexadecimal number system has sixteen different symbols, which represent the value of each
hexadecimal digit. As shown in the conversion table of Figure 5.7a, 0 through 9 are used to
represent the first ten hexadecimal symbols, and letters A through F are used to represent the
last six symbols. Each hexadecimal symbol represents one of the sixteen possible
combinations of four bits. Therefore, eight bits of data is more easily represented as two
hexadecimal digits.

5.7.1. Binary to Hexadecimal Conversion
To convert a binary number to hexadecimal is quite easy. Starting from the least

significant bit (b0), group the binary bits into groups of four. Use the table of Figure 5.7a to
determine the hexadecimal symbol that represents each group of four bits.

For example:
1000,1100,0111,10102 =
 8 C 7 A16

 Chapter 5 Number Systems And Codes

 Page 66 Copyright  2000 R.M. Laurie

Figure 5.7 Hexadecimal Numbers

5.7.2. Hexadecimal to Binary Conversion

Converting from hexadecimal to binary is also quite simple. Use the table of Figure
5.7a to determine the group of four bits, which represents each digit of the hexadecimal
number.

For example:
 A 5 2 F16 =
1010,0101,0010,11112

5.7.3. Hexadecimal to Decimal Conversion
An example of hexadecimal to decimal conversion is shown in Figure 5.7b, for

hexadecimal number A52F. To convert any hexadecimal number to decimal, determine the
powers of sixteen representing each digit and multiply the number in each digit by the power
of sixteen associated with that digit. Then add up the products of each digit to determine the
equivalent decimal number.

Conversion of a four digit hexadecimal number, h3 h2 h1 h0, to decimal is represented by
the following equation:

h3163 + h2162 + h1161 + h0160 = h3 (4096) + h2 (256) + h1 (16) + h0 (1)

5.7.4. Decimal to Hexadecimal Conversion
To convert from a decimal number to a hexadecimal number is more difficult.
One method is similar to the decimal to binary conversion procedure discussed in

Example 2.1. The procedure for converting from a decimal number to a hexadecimal number
is shown in Example 5.5. Consider the decimal number 42,287. Conversion is performed

Chapter 5 Number Systems And Codes

Copyright  2000 R.M. Laurie Page 67

using successive divisions by 16. First divide 42,287 by 16 which will generate a quotient of
2642 and remainder of 15.

Next divide the preceding quotient 2642 by 16, which will generate the next quotient of
165 and remainder of 2. Continue the division by 16 until a quotient of 0 exists. The
hexadecimal equivalent is determined by examining the remainder column and taking the
final remainder as the most significant hexadecimal digit and the first remainder as the least
significant digit.

Remainders in the range of 10 to 15 would of have to be converted to their hexadecimal
symbols described in the table of Figure 5.7a. Therefore, 42,287 decimal is equivalent to the
hexadecimal number A52F.

Example 5.5: Convert 42,287 Decimal to Hexadecimal

5.7.5. Hexadecimal Addition
Hexadecimal addition is similar to decimal addition except digits are incremented up to

F (1510) before generating a carry into the next significant digit. This is demonstrated with
the following examples:

5.8. Alphanumeric Data Representation
People use written language to communicate among themselves and to give instructions

to a computer in the form user keyboard input. Alphanumeric data is represented by a binary
code for each letter, number, and symbol commonly associated with a typewriter keyboard.
The ASCII (American Standard Code for Information Interchange) Code is the most
commonly used representation for alphanumeric data. Figure 5.8 presents a table used to
convert from either hexadecimal or binary codes to the ASCII characters represented by
these codes. All upper and lower case letters, numbers, and symbols used in the English
language are in column 2 through 7. Special computer control characters are found in
columns 0 and 1. A definition of each of these control characters is located below the
conversion table.

An ASCII character is represented by a byte, with bit 7 (MSB) being the parity bit and
bits 6 through 0 determined by the conversion table. The parity bit is used for error detection
when transmitting and receiving data. Both the transmitter and receiver must be setup to
transfer data with the same parity. The parity bit value is determined by the type of parity

 Chapter 5 Number Systems And Codes

 Page 68 Copyright  2000 R.M. Laurie

selected and the state of bits 6 through 0. Four types of parity exist as described in the table
below. However, in most applications the parity bit is simply set to ‘0’.

0 Parity Bit 7 set to 0 (Default)
1 Parity Bit 7 set to 1
Even Parity Bit 7 set to generate an even number of 1’s for the byte
Odd Parity Bit 7 set to generate an odd number of 1’s for the byte

5.8.1. Binary String to ASCII Character Conversion
Given a string of binary bits or hexadecimal numbers, conversion to the ASCII

characters is performed by separating the string into individual bytes. Again, it is assumed
that the parity bit is equal to 0.

To convert bits 6 through 0 to ASCII, use the ASCII conversion table of Figure 5.8. The
least significant nibble, bits 3 through 0, represents the rows of the conversion table. Entries
are listed in both binary bits and hexadecimal digits. Bits 6 through 4 represent the columns
of the table. Once the specific column and row are located, the ASCII character defined by
the byte is found at the specified row and column. Continue this conversion process for each
byte of the string. This procedure is illustrated in the example below.

As an example, convert the following hexadecimal representation of a binary string
with ‘0’ parity to ASCII characters.

Hexadecimal Representation = 576861743F
 57 68 61 74 3F
 0101,0111 0110,1000 0110,0001 0111,0100 0011,1111
Convert using ASCII Conversion Table gives you the following answer:

W h a t ?
= What?

5.8.2. ASCII Character to Binary String Conversion
The conversion of a string of characters to a string of bits or hexadecimal digits is performed
using the reverse process of the above. Find the ASCII character in the ASCII Conversion
table. Determine the byte representing this ASCII character by first determining the row of
the character in the table. This specifies the least significant nibble, bits 3 through 0. Then
determine the column of the character, which specifies bits 6 through 4. Bit 7 is the parity bit
and assumed to be 0. Once all eight bits of the ASCII character byte are determined, they can
be converted to hexadecimal, if desired. This procedure is illustrated below.

ASCII Character String = What?
 W h a t ?

Conversion 101,0111 110,1000 110,0001 111,0100 011,1111
Parity Added 0101,0111 0110,1000 0110,0001 0111,0100 0011,1111

Hexadecimal 57 68 61 74 3F

Chapter 5 Number Systems And Codes

Copyright  2000 R.M. Laurie Page 69

Figure 5.8 ASCII Conversion Table

HEX

MSD

0

1

2

3

4

5

6

7

LSD

BINARY

000

001

010

011

100

101

110

111

0

0000

NUL

DLE

SPACE

0

@

P

‘

p

1

0001

SOH

DC1

!

1

A

Q

a

q

2

0010

STX

DC2

"

2

B

R

b

r

3

0011

ETX

DC3

3

C

S

c

s

4

0100

EOT

DC4

$

4

D

T

d

t

5

0101

ENQ

NAK

%

5

E

U

e

u

6

0110

ACK

SYN

&

6

F

V

f

v

7

0111

BEL

ETB

'

7

G

W

g

w

8

1000

BS

CAN

(

8

H

X

h

x

9

1001

HT

EM

)

9

I

Y

i

y

A

1010

LF

SUB

*

:

J

Z

j

z

B

1011

VT

ESC

+

;

K

[

k

{

C

1100

FF

FS

,

<

L

\

l

|

D

1101

CR

GS

-

=

M

]

m

}

E

1110

SO

RS

.

>

N

^

n

~

F

1111

SI

US

/

?

O

_

o

DEL

 Control Characters:

NUL

Null

VT

Vertical

SYN

Synchronous Idle

SOH

Start of Heading

FF

Form Feed

ETB

End Transmission Block

STX

Start of Text

CR

Carriage Return

CAN

Cancel

ETX

End of Text

SO

Shift Out

EM

End of Medium

EOT

End of Transmission

SI

Shift In

SUB

Substitute

ENQ

Enquiry

DLE

Data Link

ESC

Escape

ACK

Acknowledge

DC1

Device Control

FS

File Separator

BEL

Bell

DC2

Device Control

GS

Group Separator

BS

Backspace

DC3

Device Control

RS

Record Separator

HT

Horizontal

DC4

Device Control

US

Unit Separator

LF

Line Feed

NAK

Negative

DEL

Delete

 Chapter 5 Number Systems And Codes

 Page 70 Copyright  2000 R.M. Laurie

PPrroobblleemm SSeett
1. Perform the following decimal to binary conversions. Verify your answers by

performing binary to decimal conversions.
a) 25 b) 31 c) 173 d) 250
e) 320 f) -19 g) -102 h) -185

2. Perform the following binary additions on one byte numbers. Determine the state of
the carry flag [C] and the overflow flag [V] after the addition operation.
a) 0010,0110 b) 0110,0010 c) 1010,0111 d) 1010,1010
 +0001,1011 +0101,0001 +0110,0011 +1100,0011

3. Determine the decimal equivalents for the numbers of problem 2 for both binary
signed and unsigned number representations. Verify that the resulting sum is
correct by also determining the decimal equivalents.

4. When performing binary addition what is the significance of the overflow flag and
carry flags?

5. Convert the following decimal numbers to both 8421 BCD and Grey Code BCD
formats. Verify your answers by performing the reverse conversion. Assume four
bits represent one decimal digit.

a) 25 b)83 c)94 d)122

6. Convert the following hexadecimal numbers to binary. Verify your answers by
converting the binary result back to hexadecimal.

a) 87 b) 23 c) CF d)73B

7. Convert the hexadecimal numbers of Problem 8 to decimal. Verify your answers by
converting the decimal result back to binary.

8. Write the hexadecimal string for the following ASCII character strings. Assume the
parity bit is ‘0’.

a) What If?
b) PO Box 135
c) Houghton, MI
d) 49931

9. Convert the following hexadecimal string to ASCII characters.
45 45 33 30 36 20 49 73 20 46 75 6E 21

Problem Set Solutions for Select Problems

Copyright  2000 R.M. Laurie Page 71

PPrroobblleemm SSeett SSoolluuttiioonnss ffoorr SSeelleecctt PPrroobblleemmss
Chapter 2 Problem Solutions

 Problem Set Solutions for Select Problems

 Page 72 Copyright  2000 R.M. Laurie

Chapter 2 Problem Solutions

7 POS)

11d)

Problem Set Solutions for Select Problems

Copyright  2000 R.M. Laurie Page 73

Chapter 3 Problem Solutions

Chapter 4 Problem Solutions

9d)

2a&c)

6)

 Problem Set Solutions for Select Problems

 Page 74 Copyright  2000 R.M. Laurie

Chapter 5 Problem Solutions
1a) 25=0001,1001 1c) 173=1010,1101 1 e) 320=1,0100,0000 !Exceeds 8 bits

2a)

2c)

6 a) 8716 =1000,01112 10c) CF16=1100,11112

7 a) 8716 =13510 b) 2316 =3510 c) CF16=20710

8 a) What If? = 57 68 61 74 20 49 66 3F

	Introduction
	Digital Logic States
	Modularity

	Combinational Logic
	Logic Gates
	Boolean Algebra
	Boolean Equivalence Verification
	Truth Table Verification
	Boolean Algebra Verification

	Combinational Network Design
	Description to Digital Circuit Design
	Sum of Products (SOP) Method
	Product Of Sums (POS) Method
	Induction Method

	Digital Circuit Minimization
	Boolean Expressions from Digital Circuit

	Common Combinational Circuits
	Decoders
	Multiplexers
	Binary Adders
	Arithmetic Logic Units

	Integrated Circuits
	Dual In-Line Packages
	Surface Mount Packages
	Integrated Circuit Technologies
	Device Outputs
	Tri-state Gates
	Open-Collector Gates
	Drivers

	Sequential Logic
	Sequential Logic Devices
	J-K Flip-Flop
	T Flip-Flop
	D Flip-Flop and Latch
	Preset And Clear Inputs

	Timing Diagram Construction For Sequential Circuits
	Sequential Circuits
	Frequency Dividers and Counters
	Data Registers
	Shift Registers
	Data Converters
	Serial to Parallel Data Converter
	Parallel to Serial Data Converter

	Sequential Integrated Circuits

	Number Systems And Codes
	Unsigned Binary Numbers
	Binary to Decimal Conversion
	Decimal to Binary Conversion

	Signed Binary Numbers
	Binary Addition
	Binary Number Magnitude
	Binary Coded Decimal Representation
	Floating Point Representations
	Hexadecimal Numbers
	Binary to Hexadecimal Conversion
	Hexadecimal to Binary Conversion
	Hexadecimal to Decimal Conversion
	Decimal to Hexadecimal Conversion
	Hexadecimal Addition

	Alphanumeric Data Representation
	Binary String to ASCII Character Conversion
	ASCII Character to Binary String Conversion

