Fundamentals of Digital Systems

by
Robert M. Laurie

This text material is a work in progress.
Please contact me with suggestions and corrections:

Robert M. Laurie

Electrical & Computer Engineering
Michigan Technological University
Houghton, Michigan 49931 USA

boblaurie@yahoo.com

Copyright 0 2000 by R.M. Laurie, All Rights Reserved

Table of Contents

Chapter 1. INrOUCHION.........coiieiieee ettt sre e 1
1.1. Digital LOQIC SLALES......eiiueeeerieeeieie sttt eee sttt ee e seeeee e e e sesneeneeseeeeeseesreenenns 1
2 |V Koo [U] = 1 USSR 3

Chapter 2. Combinational LOGIC.........ccevveuerieriieie e eee e e ee e 4
5 I o o ol - | === SRS 4
2.2. BOOIEAN AlGEDI ... e e 7
2.3. Boolean Equivalence VerifiCation...........cooeereiieene e 8

2.3 1 Truth Table VerifiCalion.ot s 9
2.3.2. Boolean Algebra VerifiCationcccoeiiieieneneeee e 10
2.4. Combinational NetWOrK DESIQN.........coiviieeiieiiieese ettt nae 11
2.4.1. Description to Digital CirCUIt DESION....ccccueieiisireseeeeeeee e ste e et se e e ee e esaesaesresnesnens 12
2.4.1.1. Sum of Products (SOP) MEthOd..........cccoueviriiieiicereee e 13
2.4.1.2. Product Of SUMS (POS) MEthOdcoooiiiiiieeee e 14
2.4.1.3. INAUCEION MELNOM ...ttt bbb 14
2.4.2. Digital Circuit MiniMIiZationcoieeririeee e e s sbe e see s 15
2.4.3. Boolean Expressions from Digital CirCUIL..........covererieeiiie i 16
2.5. Common Combinational Cif CUITS........ccoeeieiieiere e 17
P T = ol L= SO S 18
2 Y LU L] o] == £ S 19
PG T 2 1T 0 YA Ao (o[£ 20
2.5.4. ArithmetiC LOGIC UNILS......ciueieeieiisiesistesesteeeesee e ste st sreseeseeaeseestesaesneeneeeenaeseessesnesnens 22
0 0] 0 1 S 23

Chapter 3. Integrated CirCUITSccoeieeiiee e 26
3.1. DUAI IN-LiNEPACKAGES.......ccecieitictietecte ettt sttt st et aesresreenne 26
3.2. SUrface MouNt PACKaGES.........coiiiiiieieieieese s 30
3.3. Integrated Circuit TECNNOIOGIES.coveieeeireeeriere e 31
3.4, DEVICE OULPULS ..ottt ettt e ettt e st e er e e te s re e s e besasestesneensesreeneesens 34

Ot I N (B = L= T =S SRR 35
3.4.2. OPEN-COlECLOr GALES......ceevereirteriietereeeeiesees ettt eaeeee e eeeseesbesaesbesseeseeneeseaeeseesresaesneas 36
R G T B €LY/ =TSRSS 37
0 0] 0 1 S 38

Pagei Copyright 00 2000 R.M. Laurie

Chapter 4. SeqUeNntial LOJIC.......coueiirieiieieeie e siee e s e e sre e snee e 40

4.1. Sequential LOgiC DEVICES........ccciiiiirieieieeee et 41
I g = [T = 1 TR 41
2 1T o o o I 42
2 G T O T 2 o] o =g Lo I o 43
O =S = AN o == T g o 11 £ 43

4.2. Timing Diagram Construction For Sequential CirCUitS.........cccoevvveveveevieseceenns 45

4.3. SEQUENTIAI CITCUITS. .. ettt 45
4.3.1. Frequency Dividers and COUNLEY'Scoeiiiiieriinere et e e st sr e enes 45
G I BT ir= U =0 11 = £ 47
G TG TS 0T L (= K = = S 48
4.3.4, DAta CONVEITENS. ... ettt sttt sttt b bbbt e e b se e sre b e et e se e e e nenresrenreeneenes 49

4.3.4.1. Serial to Parallel Data CONVEITENc.cviuirieiriieeresie et 50
4.3.4.2. Parallel to Serial Data CONVEILENc.ceiuirieiriiieeresiee st 50

4.4. Sequential Integrated CilCUITS.......ooviiiirirereseese e 50
0 0] 0 1 S 52
Chapter 5. Number SystemsS ANd COUES........cooeiieriiniereee e 57

5.2. Unsigned Binary NUMDENS. ..ottt 57
5.1.1. Binary t0 DeCiMal CONVEISIONccuiiuiiieiereeeenieriesie st seeeeeeeseeseeseeseesaesaeeneeneeeeseessesaesnens 57
5.1.2. Decimal t0 Binary CONVEISIONccuererieierieniesiestesieeee e seesee e sbesae e eseeseeseeseesbesaesaesneeneas 58

5.2. Signed Binary NUMDENS.......ooi ittt st 59

5.3. BiNAry AditiON.......cccoiiiieee ettt st ea et a et nreene 61

5.4. Binary NUumber Magnitude...........coooeiiiiiiniiineseeseeeeeese e 63

5.5. Binary Coded Decimal REPresentation...........coevererieneieeienenesiesieseseeee e 64

5.6. Floating Point REPreSENtatioNS..........coiviiriirierieieeeeesesese e 65

5.7. Hexadecimal NUMDEIS.......ooiee ettt ee 65
5.7.1. Binary to HexadeCimal CONVEISION.ccerieieriereeeie e eteeeeie et sie e e e e sae e eneas 65
5.7.2. HexadeCimal t0 Binary CONVEISION.c..ccuiiiiierieitenieieeie et see e e e b sae e eneas 66
5.7.3. Hexadecimal t0 DeCimMal CONVEISION.........ccceiriiieirieietisieseetesie sttt st see e sre e 66
5.7.4. Decimal to HexadeCimal CONVEISION.........coueiiirieirerieenie ettt ere e 66
5.7.5. HexadeCimal AdditiON........ccooiiriiiee et e 67

5.8. Alphanumeric Data Representation..........ccoeveeeeeeninese s 67
5.8.1. Binary String to ASCI|l Character CONVEIrSIONccceverieriereie e 68
5.8.2. ASCII Character to Binary String CONVErSIONccceiuirieririereneeieeie e s 68

0 0] 0 1 S 70

Problem Set Solutions for Select Problems..........ccoiiniien e, 71

Copyright 00 2000 R.M. Laurie Page ii

Table of Figures

Figurel.1
Figure 1.2
Figure 1.3
Figurel1.4
Figure 1.5

Common Notation for Logic States

Smple Digital Circuit Using a Switch

Digital Sgnal Representation

Binary to Decimal Conversion Table (0 through 15)
Computer System Block Diagram

Figure2.1 Truth Tablesfor Primary Gates. (a) NOT, (b) AND, and (c) OR
Figure 2.2 Truth Tablesfor (a) NAND, (b) NOR, and (c) XOR Gates.
Figure 2.3 Truth Table for a 3-Input AND Gate

Figure2.4
Figure2.5
Figure 2.6
Figure2.7
Figure 2.8
Figure2.9
Figure 2.10
Figure2.11
Figure2.12
Figure 2.13
Figure2.14
Figure 2.15
Figure 2.16
Figure2.17
Figure 2.18
Figure 2.19

Figure3.1
Figure 3.2
Figure 3.3
Figure3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
Figure 3.10
Figure3.11

Figure4.1
Figure 4.2
Figure4.3
Figure4.4
Figure4.5
Figure 4.6

Boolean Symbols
Boolean Algebra Identities
Gate Description for DeMorgan's Laws
Equivalent Combinational Networks
SOP Digital Circuit Drawing
POS Digital Circuit Drawing
Unsimplified Digital Circuit From Induction
Smplified Digital Circuit from Induction
Boolean Expressions for All Outputs
Boolean Expression For One Output
3 to 8 Decoder
4-Data Input Multiplexer
Half Adder
Full Adder
Four Bit Binary Adder
Sngle-Bit 4-Function ALU

14-Pin DIP Package
Functional Views of Several 7400 Series Integrated Circuits
IC Digital Circuit Drawing
MS Dual In-Line Packages
Surface Mount Technology DIP Style
Surface Mount Technology Chip Carrier Syle
Properties of Several IC Technologies
Electrical Characteristics of Four Semiconductor Technologies
Switch Analogies for Output Devices
Tri-state Gate Truth Table and Symbolic Representation
Open-Caollector Buffers Configured as Wire-AND Circuit

Timing Diagram

J-K Flip-Flop (- Edge Triggered)

Timing Diagram for the J-K Flip-Flop

The T Flip-Flop (+Edge Triggered)

Timing Diagram for a Positive Edge Triggered T Flip-Flop
D Flip-Flop (- Edge Triggered)

WNN PP

oo ~NO O Ol

12

14
16
16
17
17
18
19
20
20
21
22

27
28
29
30
31
31
32
33
35
36
37

40
42
42
43
43

Page iii Copyright 00 2000 R.M. Laurie

Figure4.7 Timing Diagram for the D Flip-Flop and D Latch

Figure 4.8 J-K Flip-Flop with Preset and Clear Inputs

Figure 4.9 Divide-by-Eight Frequency Divider or Three Bit Binary Counter
Figure4.10 Divide-by-Ten Frequency Divider or Decade Counter
Figure4.11 Four Bit Data Register

Figure4.12 Four Bit Shift Register

Figure4.13 Paralle to Serial Data Converter

Figure5.1 Decimal and Binary Number Systems

Figure5.2 Unsigned Decimal to Binary Conversions
Figure5.3 Some Sgned Binary to Decimal Conversions
Figure5.4 8-Bit Adder Circuit With Overflow and Carry Flags
Figure5.5 Binary Coded Decimal Codes

Figure5.6 Floating Point Number Representation

Figure5.7 Hexadecimal Numbers

Figure 5.8 ASCII Conversion Table

Copyright 00 2000 R.M. Laurie Page iv

46
47
48
49
51

58
59
60
63
64
65
66
69

Chapter 1 Introduction

Chapter 1. Introduction

Digital computers have brought about the information age that we live in today.
Computers are important tools for humankind in that they can locate and process enormous
amounts of information very quickly and efficiently. They allow usto utilize our
mathematical disciplinesto the fullest. In one second a computer can perform calculations
that would take a person months to do by hand. However, computers are not creative and do
only what we tell them. The list of instructions that tells the computer what to do is called a
computer program.

System reliability, fast performance, and efficient information storage and retrieval are
major factors in the acceptance and use of digital computer systems. The high reliability of
computer systemsis due largely to the fact that all dataisin adigital format. Digital
computers are designed such that digital formatted data can be processed quickly and
efficiently.

1.1. Digital Logic States

A computer is made up of many digital circuit modules that pass information in the
form of digital signals. These signals can represent either program instructions or datato be
processed. A digital signal can be considered alogic variable in that it can have only one of
two possible values at any moment in time. These values are called logic states. Figure 1.1
describes the common notation for logic states.

Figure 1.1 Common Notation for Logic States

True On Closed Yes 1 High 2 to 5 Volts

False Off Open No 0 Low 0to 1 Volt

Two possible logic states can be represented by the opening and closing of the switch in
the circuit of Figure 1.2. When alogic state is TRUE, the switch is CLOSED and the light
goes ON. When alogic state is FAL SE, the switch is OPENED and the light goes OFF. A
guestion that can be answered with YES or NO can also be said to have two logic states.

Figure 1.2 Simple Digital Circuit Using a Switch

=witch Switch
o —“_F'_'_‘_,_p
—n—\-_\-\-"b_ —y
+ Ny +
— _ _ — =) |
—Battery f@?\xnght —Battery :) Light

(@ (b)

Page 1 Copyright 00 2000 R.M. Laurie

Chapter 1 Introduction

Digital circuit inputs and outputs are logic variables whose states are usually
represented in binary (base 2) notationasa‘l’ or ‘0’. A digital signal is characterized asa
time variant signal, which isin either aHIGH or LOW State. Transition time between HIGH
and LOW statesis minimized which resultsin awaveform as depicted in Figure 1.3. The
primary constraint for adigital signal iswhether the signal is above or below a specified
threshold window. This threshold window is commonly between 1 and 2 Volts. Any signal
which is greater than 2 Voltsis considered logic ‘1’ or HIGH state, and any signal whichis
lessthan 1 Volt is considered logic ‘0’ or LOW state. Within the threshold window (between
1 and 2 Valts) the Logic State of the signal is undefined.

Figure 1.3 Digital Signal Representation

Tine —*

To perform logic operations, a device is required which can function as a switch with
two possible states. Generally, it is desirable to have this switching occur as fast as possible.
Electronicsis currently the fastest, most compact, and least expensive way to implement a
digital switch. Therefore, computer design is usually considered in the realm of electrical
engineering.

Digital switches are implemented using an electronic device called atransistor. Using
integrated circuit chip technology, it is possible to integrate millions of transistors on asingle
silicon chip. The rapid advancesin digita e ectronics technology has led to the relatively
inexpensive and compact computer systems that we use today .

The binary (Base 2) number system is often used to represent the states of several
related logic variables at a specific instant in time. Figure 1.4 describes the binary equivalent
for the decimal (Base 10) numbers zero through fifteen. Only two possible values can exist
for each binary digit, either ‘0" or ‘1'. A single binary digit is called a bit and a group of
eight bitsis called abyte. A group of four bits as shown in Figure 1.4, iscalled anibble.

Figure 1.4 Binary to Decimal Conversion Table (0 through 15)

Binary | Decimal Binary | Decimal
0000 |00 1000 |08
0001 |01 1001 |09
0010 |02 1010 |10
0011 |03 1011 |11
0100 |04 1100 |12
0101 |05 1101 |13
0110 |06 1110 |14
0111 |07 1111 |15

Copyright 00 2000 R.M. Laurie Page 2

Chapter 1 Introduction

Note that the binary number is zero-filled to four bits, just like the decimal number is zero-
filled to two digits. A thorough description of the binary number system, including
conversion methods, is presented in Chapter 5.

1.2. Modularity

Two magjor aspectsin the design of any computer system are hardware and software.
Hardwareisthe physica computer, while software consists of the computer programs
required to make the computer perform desired functions. Hardware and software must
function together in a working computer system.

Modularity is one of the most important concepts in computer engineering and is
applied in both hardware and software. Modularity is the process by which once something
is designed to perform a desired function; it may be used as a functiona block or module to
implement the same function in a future design. Modularity avoids the "re-inventing of the
wheel" syndrome, and minimizes design time. Modularity can best be utilized by
partitioning alarge task into simpler functional blocks or modules. This partitions the design
into many manageabl e tasks that can usually be solved separately using previoudy designed
modules. These modules are then interconnected to perform the desired function.

Hardware modularity has led to the rapid advances in computer technology. A
computer can be viewed as a group of functional modules, with each module consisting of a
hierarchy of smaller sub-modules. All modules are constructed using transistors in the form
of integrated circuits. Figure 1.5 illustrates a block diagram of a computer system. All digital
computer systems, whether small microprocessor based computers or large super computers,
have this same structure. The major components are memory, a CPU, and I/O ports. Memory
is used to store binary data that can represent either information or program instructions. The
Central Processing Unit (CPU) is used to process data as specified by the instructions of the
program. Input/output (1/0) ports are used to transfer information between interface devices
and peripherals that may be in the form of akeyboard, display, printer, or disk drives. Figure
1.5illustrates all functional blocks interconnected using circuit paths called buses.

Software modularity is utilized when a computer program is being written. A program
can be divided into many functional modules or functions. Each function can be written and
debugged separately. Thus, software development employs modularity principles by
partitioning alarge program into several smaller and more manageable tasks.

Figure 1.5 Computer System Block Diagram

Central

Processor Memory
Unit
Interface
. T—» 1/0
Device f— Port

Page 3 Copyright 00 2000 R.M. Laurie

Chapter 2 Combinational Logic

Chapter 2. Combinational Logic

The hardware of a computer system is made of digital logic devicesthat are
interconnected to form a digital circuit. Digita logic is divided into two categories:
combinational logic and sequential logic. Combinational logic devices respond with a fixed
set of transformation rules, which specify the state of all outputs for every combination of
input states. For combinational logic the outputs are afunction of only the present state of
the inputs. For sequential logic the output is afunction of both the present state of inputs and
the past state of the output.

2.1. Logic Gates

A logic gate is adevice that uses a fixed set of rulesto transform a set of logical
variable inputs into asingle logical variable output. Although the inputs and output may vary
with time, the transformation rules for alogic gate are time invariant. The output is
dependent only on the states of the inputs at that instant.

Logic gates can be connected together to form complex digital circuits, called
combinational networks. These networks can transform alarge set of digital inputsinto a
large set of outputs. When studying combinational networks, past behavior is not important;
what is important are the rules that specify the state of the outputs as a function of all
combinations of input states.

All digital circuits, including the largest of computers, are built from three primary
logic gates. These primary gates are called NOT (or Inverter), AND, and OR. Theinputs and
output of alogic gate arelogic variablesthat arein either aone or ‘0’ state. The
transformation rules for a gate are specified in atruth table. The truth table specifies the state
of the output for al possible combinations of input states. Figure 2.1 contains the truth tables
for the NOT, AND, and OR gates. Also shown isthedigital circuit drawing symbols and
Boolean algebra symbols for each of these three gates.

The NOT gate is often called an inverter since its output state will be the inverse of the
input state. The circuit symbol for the NOT gateis atriangle with acircle on the output, as
shown in Figure 2.1a. The Boolean algebra symbol for the NOT operation is an inversion bar
placed over the input logic variable. The NOT operation is defined for only one input, while
the AND and OR operations require more than one input.

The AND operation for two inputsis depicted by the truth table and logic symbol
shown in Figure 2.1b. The AND gate output is‘1’ only if al inputs are ‘1’; otherwise, the
output is ‘0. The Boolean algebra symbol for the AND operation is the same as
multiplication in algebra of real numbers.

The OR operation for two inputs is depicted by the truth table and logic symbol
illustrated in Figure 2.1c. The OR gate output will be*1’ if any inputisinthe ‘1’ state.
Therefore, the only case for which the output is ‘0" occurs when al inputsare ‘0’. The
Boolean algebra symbol for the OR operation is represented by a plus symbol.

Three additional gates, the NAND, NOR, and XOR (Exclusive OR) are smple
combinations of the three primary gates NOT, AND, and OR. Figure 2.2 contains the truth
tablesfor the NAND, NOR, and XOR. Also shown, are the digital circuit symbols and
Boolean algebra symbols for each of these three gates.

Copyright 00 2000 R.M. Laurie Page 4

Chapter 2 Combinational Logic

Figure 2.1 Truth Tables for Primary Gates. (a) NOT, (b) AND, and (c) OR
(a) NOT (Inverter)

Al A=0NOT A

ol 1 A A
1 0
A 0—
AB
B.——-“
(c) OR
AB | A+B = A OR B
00 0 A
01 1 A+B
10 1 B
11 1

The NAND gate can be considered an abbreviation for NOT-AND. The truth table for a
NAND gate is the same as an AND gate with its output inverted (NOT). The NAND gate
can be drawn asadigital circuit with an AND gate output connected to a NOT gate input.
The NAND gate is such a common logic gate that it is usually drawn as an AND gate with a
circle on the output of the gate as shown in Figure 2.2a. Thiscircleiscaled an inversion
circleand represents a NOT operation performed on the specified output. The Boolean
algebra symbol for aNAND operation is represented with the inversion of the AND
operation or AB.

The NOR gateissimilarly aNOT-OR operation which is represented as an OR gate
with its output inverted. This can be verified by examining the truth table of Figure 2.2b. The
circuit symbol for aNOR gate is an OR gate with an inversion circle on the output. The
NOR operation is represented in Boolean algebra as A+B.

The Exclusive OR (XOR) operation is defined by the following statement: If an odd
number of inputsare ‘1’ then the outputisa‘l’; otherwise, the output is‘0’. The circuit
symbol for an XOR gate is shown in Figure 2.2c. It is similar to an OR gate with an
additional arc drawn across the input side of the gate. The Boolean algebra symbol for the
Exclusive OR operation is a plus sign enclosed in acircle denoted by AOB.

More than two inputs may be used for the AND, NAND, OR, NOR, and XOR gates. A
gate with atotal of ninputswill have 2" possible combinations of these n inputs. Therefore,
when constructing the truth table for a gate with ninputs, 2" rows must exist which represent

Page 5 Copyright 00 2000 R.M. Laurie

Chapter 2 Combinational Logic

all possible combinations of input states. Thisisillustrated by the truth table in Figure 2.3
for a3-input AND gate. It is best to use the binary counting scheme described in Figure 1.4
to account for all possible combinations of input states.

Figure 2.2 Truth Tables for (a) NAND, (b) NOR, and (c) XOR Gates.
(a) NAND

B = A Not AND B

Ae— .
——® AB
B®
(b) NOR
AB +B = A Not OR B
A —_
A+B
B
(c) XOR (Exclusive OR)
AB | A®B = A XOR B
ooj]o A
0111 A®B
10] 1 B
11]0
Figure 2.3 Truth Table for a 3-Input AND Gate
AND
ABC | ABC = A AND B AND C
000} o0
oo01}o0 A@g——]
o10]o0 :
011 0 B &—— ABC
100]0
1010 c&—
110})0
111411

Copyright 00 2000 R.M. Laurie Page 6

Chapter 2 Combinational Logic

2.2. Boolean Algebra

Boolean algebrais a branch of mathematics for which the values of dl variables are
either ‘0" or ‘1'. There are three primary Boolean a gebra operations which consist of the
logic operations NOT, AND, and OR. Since binary (base 2) numbers can represent all logic
valuesin digital circuits, Boolean algebra can be applied for analysis and synthesis of digital
circuits. Boolean symbols were used for the output variable in the previously described truth
tables. These symbols are summarized in Figure 2.4.

Figure 2.4 Boolean Symbols

A = NOT A = Complement A AOB= A Exclusive-OR B
AB = A AND B A B= A NAND B
A+B = A OR B A+B = A NOR B

Just as any other branch of mathematics, Boolean algebra has many identities that have
been proven and can be used for simplification or to find equivalent expressions. The most
common identities are listed in Figure 2.5. All variablesin Boolean agebraic descriptions
arelogic variables. Therefore, the variables A, B, and C of Figure 2.5 have avalue of either
‘1" or ‘0. Keeping thisin mind, many of the results of these identities are fairly intuitive.
Thefirst five identities of Figure 2.5 are the fundamental identities of Boolean algebra.
Using these identities, all other identities of Figure 2.5 can be proven using Boolean
algebraic manipulation.

Once a Boolean algebra equivalency is proven it can be used as an identity.
Equivalencein Boolean algebrais not the same as equality in algebra of real numbers. For
example, consider an OR gate with both inputs connected to logic ‘1. This could be written
as1OR 1=1orinBoolean algebraic formas 1+ 1 =1. A common mistake during Boolean
algebra manipulation is the improper use of the inversion bar. Notethat A B # A B.

DeMorgan's law is avery important identity that is used for manipulating inversion
bars. DeMorgan's AND Law iswrittenin Boolean algebraicformasA B = A + B, and
can be stated as NOT the quantity A AND B isequivalent to NOT A OR NOT B.
DeMorgan's OR Law is an alternate form and is written algebraically asA+B = A B. Both
the AND and OR forms of DeMorgan's Law are equival ent, which is proven in Example
2.2d. DeMorgan's law can also be extended too more than two variables. By applying
DeMorgan's law, equivalent gate symbols can be found as shown in

Figure 2.6. Note that inversion circles can be used to show an inversion of the input
variables as well as the output.

Duality is a Boolean agebra principle describing once equivalence is proven adua of
this equivalence can be determined that is also a valid equivalence expression. The dual of a
Boolean expression can be determined as follows. Replace all AND operations with OR
operations and all OR operations with AND operations on both sides of the equivalency;
then replace all 1'swith O's and O's with 1's on both sides of the equivalency. The duality
principle was applied in constructing the identity table of Figure 2.5. Note that the dual of
the AND form of anidentity isthe OR form of the same identity.

Page 7 Copyright 00 2000 R.M. Laurie

Chapter 2 Combinational Logic

Substitution is the process by which alogic variable may be substituted for a Boolean
expression or vise-versa. Substitution is frequently used when simplifying a Boolean
expression. It can aso be used to extend the identities of Figure 2.5 to a greater number of
variables than what is specified.

Double Inversion is another identity. If a Boolean expression has two inversion bars
over it, they cancel each other and both inversion bars can be removed. This relationship can
be expressed in algebraicformasA = A or A B = A B.

Notethat A B # A B.

Figure 2.5 Boolean Algebra Identities

Name AND Form OR Form
Identity law 1A = A 0O+ A=A

Null law 0A =0 1+A=1
Idempotent law - AA = A A+ A=A

Inverse law AA = 0 A+A=1
Commutative law AB = BA A+B=B+A
Associative law (AB)C = A(BC) (A+B)+C=A+(B+C)
Distributive law A+ BC=(A+B)(A+C) A(B + C) = AB + AC
De Morgan's law AB=A+B A+B=AB
Absorption law A(A +B) = A A+ AB = A
Inclusion law A(A + B) = AB AB+B=A+B

Figure 2.6 Gate Description for DeMorgan's Laws

A+B A+B = AB

T g > J

2.3. Boolean Equivalence Verification

For any given combinational network, a Boolean expression can be written for each of
the outputsin terms of the inputs. Using Boolean algebra, equivalent circuit designs can be
found for optimizing a design or predicting the results for various situations.

Copyright 00 2000 R.M. Laurie Page 8

Chapter 2 Combinational Logic

Two methods may be employed to verify Boolean identities or find an alternate
equivalent solution. One method uses a truth table and the other uses Boolean algebra.

2.3.1. Truth Table Verification

When constructing a truth table the output values must be found for all possible
combinations of input states. For ninput variables, 2" rows will be required for the truth
table. All logic variables are in either the ‘1’ or ‘0" state. Example 2.1athrough Example
2.1c illustrates the use of truth tables to prove equivalency of two Boolean expressions.

Example 2.1 Truth Table Verification

a) Verify: 1A = A (Identity AND Law)

A 1 1A

0 1 0

1 1 1

T Tt Verifies

b) Verify: A + B = A B (De Morgan's OR Law)

AB|A+B|A+B|X| |

00 0 1 1 1 1
01 1 0 1 0 0
10 1 0 0 1 0
11 1 0 0 0 0
T t — Verifies

¢) Verify: (A + B)(A + B) =

+

ABIA BIA+§|(A+B)(A+§)

= = O
= O
Pr = OO

)~ —~ O O
— O = O

Verifies

Construction of the truth table begins by writing all possible combinations of input
logic statesin the left-most columns of the truth table. This can be done best by using the
binary counting scheme of Figure 1.4 to account for all possible combinations of input
variables. Then perform one primary logic operation (AND, OR, or NOT) by determining
the output value of the logic operation for all combinations of input logic variables. Any
column can be used as an input to perform additional logic operations, whether it is an
output from a previous logic operation or an input logic variable. For clarity, vertical lines
should separate all columns that represent results of logic operations. Continue performing
logic operations in the truth table until two columns exist which represent the two Boolean

Page 9 Copyright 00 2000 R.M. Laurie

Chapter 2 Combinational Logic

expressions on either side of the equality. If the columns match for all possible combinations
of the inputs, the two Boolean expressions are said to be equivalent.

Example 2.1 demonstrates truth table verification to prove the Identity AND Law and
DeMorgan's OR Law. Any of the identities of Figure 2.5 may be proven using truth tables.
Example 2.1c describes a Boolean relationship, which is verified using a truth table. Once
thisrelationship is proven to be equivalent, it may be used as an identity.

2.3.2. Boolean Algebra Verification

In mathematics, algebraic manipulation using proven identities can create equivalent
expressions. The same procedure can be applied to Boolean algebra. Using the Boolean
identities of Figure 2.5, substitution, and double inversion, a Boolean expression can be
manipulated to find an alternate equivalent expression. Two expressions are equivalent when
they generate the same results for all possible combinations of logic variable inputs.
Equivalence can be proven using truth tables. However, for expressions with more than four
logic variables, truth tables become tedious and Boolean algebra verification is often easier.

Example 2.2 Algebraic Verification
a) Verify: A+ A B = A (Absorption OR Law)

Al + AB (Identity AND Law)

A (1 + B) (Distributive OR Law)

= A1 (Null OR Law)
= A (Identity AND Law)
b) Verify: AB+B = A+B (Inclusion OR Law)
= B+AB (Commutative OR Law)

(B + A)(B + B) (Distributive AND Law)

=(B+A)1 (Inverse OR Law)
=B+ A {(Identity AND Law)
= A+B {Commutative OR Law)

Copyright 00 2000 R.M. Laurie Page 10

Chapter 2 Combinational Logic

¢) Simplify: X =ABC+AC+BC

=C(AB+B+A) (Distributive OR Law)
=C(A+B+A) (Inclusion OR Law)
=¢C (1 + B) (Inverse OR Law)
= C (1) (Null OR Law)

X =C (Identity AND Law)

d) Show the two forms of De Morgan's Law are equivalent.

AB=(A+3B) (De Morgan's AND Law)
A:—_ﬁ = (A +B) (Invert Both Sides)
AB=(A+3B) (Double Inversion)
Set C = A D=8 (Substitution)
CD=C+D (De Morgan's OR Law)

Example 2.2a and Example 2.2b demonstrate the use of Boolean algebrato verify the
Absorption OR Law and Inclusion OR Law using other identities from Figure 2.5. Note that
the identities of Figure 2.5 specify the form of equivalent expressions and not the actual
input variables themselves. Example 2.2c illustrates the use of Boolean algebrato simplify
an expression. After simplification is performed, one can see that output X is dependent only
on the value of input C and isin fact equivalent to C. Example 2.2d demonstrates that both
the AND and OR forms of DeMorgan's law are equivalent using Boolean algebraic
manipulation.

2.4. Combinational Network Design

Design of combinational networks requires a working knowledge of Boolean algebra,
truth table construction, and digital logic gate representations. It is essential to know how to
go from one representation to another.

Several configurations of logic gates may have the same input/output characteristics,
that is, each combination of input states produces the same output states. Two combinational
networks with the same input/output characteristics are said to be equivaent. Equivalenceis
verified through truth table construction or Boolean algebra. Figure 2.7 illustrates two
equivalent combinational networks. The networks are the digital circuits representing the
Distributive AND Law of Figure 2.5.

Page 11 Copyright 00 2000 R.M. Laurie

Chapter 2 Combinational Logic

2.4.1. Description to Digital Circuit Design

Once adescription of the desired logic function is defined, adigital circuit can be
designed to implement the function. The description may be atruth table or a verbal
description. To understand the function of adigital circuit, the state of the outputs must be
known for al possible combinations of inputs. Constructing the truth table, as discussed in
Section 2.3.1, is one way to account for al possible combinations of inputs.

After the description is defined, the next step towards designing the digital circuit isto
determine a Bool ean expression that describes the desired function. The Sum of Products
and Product of Sums methods are two procedures, which can be utilized to determine avalid
Boolean expression directly from atruth table description. The induction method is used to
determine a valid Boolean expression directly from a verbal description.

Thetruth table of Figure 2.7 is used as an example to demonstrate the sum of products
method for the second output column (X=A+BC).

After aBoolean expression has been found to describe the logic function, the digital
circuit can be designed directly. This is accomplished by using the gates discussed in Section
2.1 to implement each of the logic functions of the Boolean expression. Just as with algebra
of real numbers, product operations (AND functions) are performed first and then sum
operations (OR functions). Parentheses are used to specify a different order of operation and
to group terms.

Two simple digital circuitsareillustrated in Figure 2.7 for outputs X and Y. Examining
the output X and Y columns of the truth table of Figure 2.7, one can verify that these are
equivalent circuits.

Figure 2.7 Equivalent Combinational Networks
a) X=A+BC b) Y=(A+B)(A+C)

A A’—:i :
B #
C — c,_:D_‘r

ABC|BC|X=aA+BC|A+B]JA+C]Y=(A+B)(aA+C)
000] o 0 0 0 0
001 0 0 0 1 0
o10] o 0 1 0 0
011 1 1 1 1 1
100 0 1 1 1 1
101 0 1 1 1 1
110 0 1 1 1 1
111 1 1 1 1 1

Copyright 00 2000 R.M. Laurie Page 12

Chapter 2 Combinational Logic

2.4.1.1. Sum of Products (SOP) Method

The Sum of Products (SOP) method is a procedure, for determining a valid Boolean
expression from atruth table description. This method considers only those rows of the truth
table with logic ‘1" in the output column.

Examining the truth table of Figure 2.7, Output X equals ‘1’ in the fourth row. This
occurs when the inputs conditions are A=0, B=1, and C=1. Similarly, for the fifth row X
equals ‘1’ when A=1, B=0, and C=0. Boolean expressions can be written to express these
relationships for the fourth and fifth rows as ABC=1 and ABC =1. Likewise, Boolean
expressions can be written for the sixth row as ABC=1, the seventh row as ABC=1, and
eighth row as ABC=1. These Boolean expressions are called minterms. Minterms only exist
for rows that have an output of logic 1. A Boolean expression can be written describing the
entire truth table by OR'ing each of the five mintermstogether. Thiswill result in the
following Boolean expression:

X=ABC+ABC+ABC+ABC+ABC

Notice the form of the expression is a sum of products, hence the name of the method
describes the resultant form.

Thedigita circuit can then be created from this sum of products expression as
illustrated in Figure 2.8.

Figure 2.8 SOP Digital Circuit Drawing
X=ABC+ABC+ABC+ABC+ABC

AR BB cC

Ay ™
LD -

Page 13 Copyright 00 2000 R.M. Laurie

Chapter 2 Combinational Logic

2.4.1.2. Product Of Sums (POS) Method

The Product Of Sums (POS) method is another procedure, for determining avalid
Boolean expression from atruth table description. This method considers only those rows of
the truth table with logic * O in the output column.

The first three rows of the truth table of Figure 2.7 have ‘0's in output column X. A
maxterm can be written for each of these rows using the following procedure:

If theinput is 1 for the specified row, the inverse of the input variableis used;

otherwise, if theinput is 0, the input variable is used directly.

Theinput logic variables are then OR'ed together to form the maxterm. Only rows with an
output of 0 will have a maxterm.

The maxterms for the truth table of Figure 2.7 are written asfollows: The first row is
(A+B+C), the second row is (A+B+C), and the third row is (A+B+C). The resulting
maxterms can then be AND'ed together to form a valid Boolean expression for the truth
table. Thiswill result in the following expression, which isin product of sum form.

X = (A+B+C)(A+B+C) (A+B+C)

Thedigita circuit for this product of sums expression is shown in Figure 2.9.

Figure 2.9 POS Digital Circuit Drawing
X = (A+B+C)(A+B+C) (A+B+C)

Ak

B 1

¢ 1o = > x

2.4.1.3. Induction Method

The induction method describes the process of determining a Boolean expression
directly from the verbal description. Thisis particularly useful for systems with more than
four inputs because truth tables become cumbersome and the resulting sum of products and
product of sums expressions can become lengthy. Output X in Figure 2.7 can be described
verbaly as:

Xislif Ais1, orif B and C arel. Otherwise, X isO.

From this verbal description the Boolean expression can be written directly:
X=A+BC

Copyright 00 2000 R.M. Laurie Page 14

Chapter 2 Combinational Logic

2.4.2. Digital Circuit Minimization

Thedigita circuits of Figures 2.7, 2.8, and 2.9, are all equivalent combinational
networks since they all generate the same input/output relationships and are derived from the
same truth table. The digital circuit of Figure 2.7ais the preferred choice since it requires the
least number of logic gates for the implementation. When designing from the truth table it is
best to use the sum of products method when fewer ‘1’ sthan *0’'s exist in the output
column, and use the product of sums method when there are fewer ‘0O'sthan ‘1’ s.

Once aBoolean expression is found using either sum of products, product of sums, or
induction, algebraic smplification of the expression is often possible using Boolean
identities. This may greatly reduce the number of gates required to construct the circuit.

As an example, suppose adigital circuit must be designed which has two outputs X and
Y; and must accomplish the following functions.

Output X is1if either Eor Fare 1 and D is 0. Otherwise X isO.

Output Y islif AandB and Carel, or D isOand either B or Care0, or if D is 1.
Otherwise Y isO.

Thiscircuit has 6 inputs (A, B, C, D, E, and F) and two outputs (X and Y). Constructing
the truth table would be tedious with 64 rows, and the resulting SOP or POS Boolean
expressions would require much effort to reduce. For these reasons, the Boolean expression
is found using induction from the verbal description and then simplifying the resuilt.

Both the unsimplified and ssimplified digital circuits for this example areillustrated in
Figure 2.10 and Figure 2.11. Note that inversion circles are shown on the inputs of some of
the gates. These symbolize inverters.

X=(E+PF)D

Y=ABC+D(B+C)+D
=ABC+ (B+C)+D (Inclusion OR Law)
=ABC+BC+0D (De Morgan's AND Law)
ZA+BC+D (Substitution and Inclusion OR Law)

Page 15 Copyright 00 2000 R.M. Laurie

Chapter 2 Combinational Logic

Figure 2.10 Unsimplified Digital Circuit From Induction
=(B+PF)D Y=ABC+D(B+T)+D

A-

Re—o

—
Ce g >ro: E Y
N\

D-
Lo

P
L 4

E
F
Figure 2.11 Simplified Digital Circuit from Induction

X=(E+F)D Y=A+BC+D
Ae

S I S e
.

2.4.3. Boolean Expressions from Digital Circuit

Modification of existing digital circuits requires the ability to go from adigita circuit
drawing to a Boolean expression. Two procedures for accomplishing this conversion are
discussed in this section. The first procedure is used when Boolean expressions for all
outputs of adigital circuit are required. The second procedureis for the case when the
Boolean expression for only one output is needed.

The procedure for determining the Boolean expression for al outputsin adigital circuit
is quite straightforward. Beginning from the input side of the digita circuit drawing, write
the output Boolean expression as you progress through each gate. Then use the output
equation from the preceding gate as the input to the next gate in the circuit. Continue writing
Boolean expressions at the output of each gate until the Boolean expressions for al outputs
of the digital circuit are determined. An example of this procedure is shown in Figure 2.12.
Notice the 2-input NAND gate with both inputs tied together. A NAND gate in this

®

D
E
F

Copyright 00 2000 R.M. Laurie Page 16

Chapter 2 Combinational Logic

configuration will function as an inverter. Similarly, a NOR gate with al inputs tied together

would also function as an inverter. This can be verified by examining the truth tables of
Figure 2.2.

Figure 2.12 Boolean Expressions for All Outputs

A o—s
L A
B ABD A X=A®ABD
o c —
Ce D o« Y=C+D
0 e
‘)

e Z=C+D+DE

Eo— DE

Consider the case of acomplex digital circuit with many outputs, and suppose the
Boolean expression for only one output is heeded. For this case, thefirst step isto trace
through the circuit from the output of interest to the inputs, marking each gate that will affect
this output. Thisisillustrated in Figure 2.13. After the gates are marked, proceed from the
input side to the output of interest by writing the Boolean expression for the output of each
affecting gate. This procedure will save considerable time when determining the Boolean
expression of a single output in complex combinational networks.

Once the Boolean expression is determined for an output, Boolean algebra can then be
used to reduce the expression to a simplified equivaent form.

Figure 2.13 Boolean Expression For One Output
O >y X
’ —

e impEp it
_: 3:: [(BB+B)C
De . | X

! Xz
DC Z=(AB+B)C +D

L 3

n
b
x| ol
~<

2.5. Common Combinational Circuits

Once adigital circuit has been designed using individual gates to perform a specific
function, it is often desirable to use the newly created circuit as a module for future designs.
Discussed in this section are several commonly used combinational circuits that include

Page 17 Copyright 00 2000 R.M. Laurie

Chapter 2 Combinational Logic

decoders, multiplexers, adders, and arithmetic logic units. These combinational circuits are
used as building blocks to construct al computers.

2.5.1. Decoders

A decoder isadigital circuit with ninputs and 2" outputs. Figure 2.14aillustrates a
logic gate diagram that can be used to congtruct the 3 to 8 decoder. Figure 2.14b is a block
diagram of the 3 to 8 decoder. Note that the block diagram contains all inputs and outputs
illustrated in the logic gate diagram. After adigital circuit has been designed to perform a
specific function, it can be considered as a functional module and is usually represented by
the block diagram.

The decoder of Figure 2.14 functions such that one and only one output isin the 1 state,
as selected by a binary code placed on select inputs A, B, and C. Since only one output can
beinthe 1 state, all other outputs will be in the O state.

Decoders are used to select one of 2" devices with an n-bit code. The n-bit code is often
called the address of the selected device. Note that only one device can be addressed at a
time since only one decoder output will bein the 1 state. Decoders are used in computers to
select one of severa functionsin the CPU and to select one of many memory locations.

Decoders can be constructed to generate either positive logic outputs or negative logic
outputs. The decoder of Figure 2.14 is an example of a positive logic output decoder.
Positive logic output decoders function such that the selected (or enabled) output isin the 1
state and all other outputs are in the O state (or disabled). Negative logic output decoders
function such that the selected output isin the O state while all other outputs arein the 1
state. A negative logic output 3 to 8 decoder can be constructed by modifying the logic
diagram of Figure 2.14. If the eight three-input AND gates are replaced with eight three-
input NAND gates, then the decoder will have negative logic outputs.

Figure 2.14 3 to 8 Decoder
a) Digital Circuit b) Block Diagram

a) _:>'—'D7 b) L D7
L— De
~N 3 to 8

) D6 — Ds
‘ Decoder }— D4
— —> D3
- / D5 > D2
— D1

A — |,

~
>
o~
a—)
g

Copyright 00 2000 R.M. Laurie Page 18

Chapter 2 Combinational Logic

2.5.2. Multiplexers

A multiplexer isacombinationa circuit in which one of several datainputsis selected
and routed to a single output. Figure 2.15 is an example of afour datainput multiplexer. The
block diagram of Figure 2.15aillustrates the four data inputs (D, through D) of which oneis
selected and routed to the single output F. The datainput is selected by applying a binary
code on the select inputs A and B. Two select inputs will generate four unigue binary codes.
Therefore, any one of four data inputs may be selected when using two select inputs. For a
general case multiplexer with n select inputs a maximum of 2" data inputs could be available.
A multiplexer with 4 select inputs may have a maximum of 16 datainputs.

The 4-data input multiplexer can be constructed using a 2 to 4 decoder and logic gates
as shown in Figure 2.15b. The decoder can be considered as a sub-module within the
multiplexer module. A logic gate implementation for the 4-data input multiplexer is
illustrated in Figure 2.15c. The reader is urged to verify the multiplexer operation. A
functional truth table for the 4-data input multiplexer is shown in Figure 2.15d. Note that the
output state isthe state of the selected data input.

Multiplexers are generally used for data routing applications and can be considered as a
data switch. Asan example, consider the case of four computers that are connected to one
printer. Only one computer can send data to the printer at atime; therefore, a 4-data input
multiplexer is chosen as a data switch. A two bit binary code will be used to address each of
the four computers.

A demultiplexer performs the opposite function. One datainput is routed to several
possible data outputs. Select inputs determine which data output transmits the data. A
demultiplexer will have one datainput, n select inputs, and 2" data outputs.

Figure 2.15 4-Data Input Multiplexer

a) Block Diagram b) Digital Circuit c) Logic Gate Diagram d) Truth Table
a) b)

D3 4-Data D3 ~—-
D2 —s Input D2 s
Multi- — P > F
D1+~—| plexer D1 —>
Dp»— () Do e—>-

S ™=
A B Decgd_e_z;
T
B
c) D3 Ei‘:)
D2 f
’———D"_@ F d) MUX Truth Table

D1 ™

[—>

>

Page 19 Copyright 00 2000 R.M. Laurie

Chapter 2 Combinational Logic

2.5.3. Binary Adders

Addition of binary numbersis accomplished using adigital circuit called an adder.
Figure 2.16 illustrates a half adder which is used to add two single-bit binary numbers
represented by logic variables A and B. The half adder circuit has two inputs A and B, and
two outputs Sum and Carry.

Thetruth table for the half adder, shown in Figure 2.16a, describes binary addition of
two single-bit binary numbers. When both inputs are 0, the sum is 0. If either input A or B is
1, but not both, the sumis 1. When both A and B are 1, the sum exceeds what can be shown
with asingle bit; therefore, the sum is 0 and the carry is set to 1. The carry output is 1 only
when both inputs A and B arelogica 1. Based on this description, the sum operation can be
accomplished by using an Exclusive-OR gate and the carry operation can be performed
using an AND gate.

Figure 2.16 Half Adder
a) Truth Table b) Logic Diagram

a) AB I Sum l Carry b) AB' ___jD—_‘Sb‘m

00 0 0
01 1 0
10 1 0
11 0 1

Carr'y

Figure 2.17 Full Adder
a) Truth Table b) Logic Diagram

Carry In
a) A B Carry In | Sum | Carry Out b) .

000 0 o A: :I[>——Sum
001 1 0 8

010 1 0

011 0 1

100 1 0

101 0 1

110 0 1

111 1 1

Carry Out

Copyright 00 2000 R.M. Laurie Page 20

Chapter 2 Combinational Logic

To utilize the carry for the next significant bit, afull adder is used for multi-bit addition.
Thetruth table and logic diagram of the full adder is shownin Figure 2.17. The 3inputs A,
B, and Carry In are added together to generate the two outputs Sum and Carry Out. Figure
218 illustrates adigital circuit, which will perform binary addition on two four-bit binary
numbers, which are represented by Az to Ag and B; to Bo. Az isthe most significant bit and
Ao isthe least significant bit of the 4-bit binary number A. Four full adder circuits (shown as
block diagrams) are utilized to construct this digital circuit. The Carry In of the least
significant bit is connected to ground because a carry will not occur into the least significant
bit. The Carry Out of the least significant bit is connected to the Carry In of the next
significant bit asillustrated in Figure 2.18. The connections of Carry Out to Carry In of the
next significant bit continue throughout the circuit. When the Carry Out of the most
significant bit is 1, the sum exceeds what can be shown with the number of bits allotted for
the sum. The Carry Out of the most significant bit is often called the Carry Flag.

Figure 2.18 Four Bit Binary Adder

TCarry Out,=0 (=1 if 4 bit Sum exceeds 1111 = 15)
0 3 2 10
A, —
3 0 Full Sum.=1
B3r+ Adder um3
Carry In3
1 Carry 0ut2=1
A —3 Consider two, 4-bit Binary Numbers
2 Full -
B r% Adder | Sum2~1
2 A=0110 =6
Carry In2 2 10
1 Carry Outl=l B=011 12 - 710
A —3
1 Pull -
B, 5| Adder [Sum®0
1 Sum = 1101 = 13
1Carry In1 2 10
R 0 Carry Out0:0
0 1 Full Sum. =1
Bye3| Adder [> SUlMy”

ICarry Ino

—

Page 21 Copyright 00 2000 R.M. Laurie

Chapter 2 Combinational Logic

2.5.4. Arithmetic Logic Units

The Arithmetic Logic Unit (ALU) isadevice, which can perform several operations on
two binary numbers. All computers contain an ALU, as a module within the Central
Processing Unit. The ALU performs the arithmetic and logic operations specified by the
instructions of a computer program.

Figure 2.19 is an example of asingle-bit 4-function ALU. Inputs X and Y are the two
Boolean variables on which a particular operation is performed. Output Z isthe result of the
operation. The ALU shown will perform one of four functions (NOT, OR, AND, or SUM)
on theinputs X and Y to generate the result Z. The function performed is determined by the
values of functional inputs Fy and F;. For example, when the Fy and F, inputsare 0 and 1
respectively, an OR operation will be performed on inputs X and Y. When both Fy and F; are
1, asum operation is performed and the Carry In input and Carry Out output will be utilized.
The functiona truth table of Figure 2.19 summarizes these operations.

The ALU of Figure 2.19 can be thought of as a module, which contains three sub-
modules, namely afull adder, alogic unit, and 4- data input multiplexer. The full adder and
logic units are used to perform sum and logic operations on the input variables. The
multiplexer is used to route the output of the selected function to output Z.

A four-bit ALU could be constructed by cascading four single-bit ALU modules
together much like the full adder circuit of Figure 2.18. All four functiona inputs F; would
be connected together and all F, inputs would be interconnected so that each ALU would
perform the same function on each bit.

Figure 2.19 Single-Bit 4-Function ALU

Fo F1 | Z
0 0 | X
0 1 X+Y Carrz In
1 0 XYy !
S R S S ——
D& ~ 4-Data
) - : Input
X—s > T P
. D— ‘ MUX YA
Y > v/ : L—D2
Logic
Unit 1™ A s
..................... T
P(;-——)-——r
Full
P1 ’ Adder r
4
Carry Out

Copyright 00 2000 R.M. Laurie Page 22

Chapter 2 Combinational Logic

Problem Set

1. Make a conversion table from Decimal (Base 10) to Binary (Base 2)
from zero to thirty-five. Zero fill the binary numbers to generate six
bits.

2. Draw the following gates and construct the truth tables for these
gates.
a) 2-input AND Gate
b) 2-input XOR Gate
c) 2-input NOR Gate
d) 3-input NAND Gate
e) 3-input XOR Gate
f) 4-input OR Gate
3. Draw the gates which represent the following Boolean symbols.
a) A+B
b) ABC
c) A+B+C
d) AOB
e) ABCD
4. Prove the following Boolean Identities using Truth Tables.
a) OA=0
b) 1+A=1
c) AA=A
d) A(A+B)=A
e) (A+B)+C=A+ (B+C)
f) A(A+ B) = AB
g A+BC=A+B)A+O0)
h) AB=A+B

Page 23 Copyright 00 2000 R.M. Laurie

Chapter 2 Combinational Logic

5. Prove the following equivalencies using Boolean algebra.
a) (A+B)(A+C)=A+BC
b) A(A + B) = AB
c) (A+B+C)A=A+B+C
d AB+C+ABCD+CC=AB+C
e) AB(B+C)=A+B
fY AB+AC+BC=A+BC
e)) ABAC=A+B+C
h)y (A+B+C)C=AB+C

6. Simplify the following Boolean expression. Verify your answer using a
truth table.
F=(A+B)(A(B+C))+AB+AC

7. Write both sum of products and product of sums Boolean expressions
for output Z using the truth table shown. Draw a logic diagram for

both circuits.

s e = OO OO P
bt bt OO s = OO |
O e Q= OO O
OO OO O N

8. Draw a logic diagram for the following Boolean Expression.

Z=(AOB)+BC+BCC

Copyright 00 2000 R.M. Laurie Page 24

Chapter 2 Combinational Logic

9. Write a Boolean Expression for Output Z.

A ————] .

—\
= >

B r—e —

Ao — ‘
I S
s> TTH>— -z

10. Construct the truth table for the 3 to 8 decoder of Figure 2.13a.

11. Construct the logic diagram and truth table for each of the following

combinational circuits.
a) 2 to 4 Decoder with positive logic outputs.
b) 2 to 4 Decoder with negative logic outputs.

c) 8-Data Input Multiplexer.
d) 4-Data Output De-Multiplexer (Unselected outputs will be in O state)

12.Construct a 4-bit adder using logic gates.

Page 25 Copyright 00 2000 R.M. Laurie

Chapter 3 Integrated Circuits

Chapter 3. Integrated Circuits

Digital circuit design is considered a high-level design method, because only the states
of the inputs and outputs are important. Gates will function as expected as long as nominal
analog circuit parameters are not exceeded. There are many advantagesto using digita
circuits over conventional analog circuits. These advantages include modularity, reiability,
and noise immunity.

Several procedures have been discussed for designing adigital circuit from either verbal
or truth table descriptionsin Section 2.4.1. The next step isto use actual digital circuit
components to construct the circuit.

Gates are not manufactured individually but are sold in packages containing severa
gates. These packages are called integrated circuits. Often the term integrated circuit is
abbreviated IC or called by its nicknamed “chip”. Integrated circuits are available in several
package styles. The two most common are the Dual In-line Package (DIP) and Surface
Mount Technology (SMT) packages. Inside the integrated circuit package is asmall silicon
chip measuring less than 1/4-inch square. This chip contains the transistors and connecting
circuits required for implementing the logic components. Several transistor technologies
exist for fabrication of silicon chips as described in Section 3.3. .

Integrated circuits are classified by the number of gates fabricated on the integrated
circuit. The classification is approximated by:

SSI (Small Scale Integrated) circuit: 1to 10 gates
MSI (Medium Scale Integrated) circuit: 10 to 100 gates
LSl (Large Scale Integrated) circuit: 100 to 100,000 gates

VLS (Very Large Scale Integrated) circuit: > 100,000 gates

3.1. Dual In-Line Packages

A common integrated circuit package is the Dual In-line Package or DIP. Figure 3.1
illustrates mechanical views of adual in-line package for a 14 pin DIP. DIPs are commonly
availablein 14, 16, 20, 22, 24, 28, 40, 64, and 68 pin arrangements with the pins aways
positioned in two parallel rows as shown in Figure 3.1. Package materials are usually plastic
or ceramic, with the pins made of gold or tin plated metal. Electrical contact between the
pins and the silicon chip is usually made using gold filament wires which are ultrasonically
welded to conductive pads on the silicon chip. Proper orientation of the IC is determined by
using either the notch shown in or by locating a small depression on the top of the IC, which
specifiespin 1.

The standard dimensional units used for IC packages are inches (English System of
Units), as shown in Figure 3.1, Figure 3.5, and Figure 3.6. Therefore, the physical layout of a
digital circuit on acircuit board is aso usualy done using inches. Often, measurements are
said to be in mils, which is an abbreviation for mil-inches or thousandths of an inch. It has
become an industry standard to make the pin separation for DIP's 100 mils or 0.100 inches.

One very common SSI circuit family isthe 7400 Series integrated circuits, which are
produced by avariety of semiconductor manufacturers. Functional views of several of these
integrated circuits areillustrated in Figure 3.2. These ICs contain the basic |ogic gates
described in Section 2.1. Specific pins on the integrated circuit package are connected

Copyright 00 2000 R.M. Laurie Page 26

Chapter 3 Integrated Circuits

internally to the inputs and output of a gate, which has been fabricated on the chip. Power
and ground are symbolized by Vcc and GND. Power usually comesfrom a5 Volt source for
most digital circuits. The following paragraphs describe four integrated circuit classifications
and examples for each.

Small Scale Integrated Circuits (SSI) usually contain several gatesinside one integrated
circuit package. When describing the number of functional unitsin the integrated circuit, one
usually uses the prefixes dual for two, triple for three, quad for four, and hex for six unitsin
the package. For exampl e the integrated circuits of Figure 3.2 would be described as follows:

7400 = Quad 2-Input NAND Gates, 7404 = Hex Inverters,
7411 = Triple 3-Input AND Gates, 7421 = Dud 4- Input AND Gates

To construct adigital circuit, integrated circuits are usually mounted on a printed circuit
board. The ICs are interconnected using conductive wire-like circuit paths, which are etched
on the circuit board when it is manufactured. The pins of the ICs and other electrical
components are soldered to the circuit board to ensure good electrical contact and
mechanical bonding. Standard DIP integrated circuits are usually classified as through-hole
component technology as their pins must pass through holesin the circuit board before they
are soldered.

Figure 3.1 14-Pin DIP Package

t-——o,775"———--
i@@@'@ ©JOJO) \
No‘(:cln/" °
AVAVAYEPRY RV
0JOJ0J0JOI0J0)
v | 0.275”[«
0.18* “
——

—>l I(- Pin Spacing 0.100"

Page 27 Copyright 00 2000 R.M. Laurie

Chapter 3 Integrated Circuits

Figure 3.2 Functional Views of Several 7400 Series Integrated Circuits

7400 7404
[[[[[[[7][]
D
URLRURURURLRY LR RCERGRG
7411 7420
[[[[I_II_II_II_ILI_II_II_I
:)"___Ej[:i;J :) ;:j———___:)c

Gnd
|_||_||_||_||_||_||_| HRERRRURERERE

7427 7430

AET AR [FAD

=]

Pretg ¢
™.

L‘ Gnd
I_||_||_||_||_I|_||_| HRERRRUNRRERE

HRERRRURRRENE HEERRRURERENE

Copyright 00 2000 R.M. Laurie Page 28

Chapter 3 Integrated Circuits

Figure 3.3 IC Digital Circuit Drawing
X=(E+FD, Y=A+BC+D
A B C

Mo ftmd ||| LM P

LFuD& upugupu Lﬁﬁw L‘J]

-
— Y —

s—eg

Consider the digital circuit of Figure 2.11. To construct this circuit would require one
7400 Quad 2-Input NAND Gate IC, and one 7432 Quad 2-Input OR Gate IC. The IC digital
circuit is designed by drawing lines, which represent circuit paths, between the pins of IC's.
Thisis demonstrated in Figure 3.3 for the digital circuit diagram of Figure 2.11, which
represents the Boolean expressions X = (E+ F) Dand Y = A + B C + D. Note that the 3-
input OR gate isimplemented by using two 2-input OR gates. Inverters are implemented by
connecting all inputs of aNAND gate together. An extra gate, contained in the 7432 IC, will
not be used. Any extra gates or spares can be used for a future modification of the digital
circuit. Power and ground connections are represented by connectionsto +5V and L
Gnd symbols. -

Medium Scale Integrated Circuits (MSI) are collections of interconnecting gates that
are used as a module to perform a specific function. Generally, MSI chips are classified as
those containing between 10 and 100 gates.

The MSI circuit for an 8-data input multiplexer is the 74152, which is shown in Figure
3.4a Contained in thisintegrated circuit are the transistors required to implement the
multiplexer function. Standard M Sl integrated circuits are available for 4, 8, and 16 data
input multiplexers.

Figure 3.4b illustrates an integrated circuit DIP for a3 to 8 decoder with negative logic
outputs (74138). The decoder integrated circuit (74138) has three additional inputs, G1,
G2A, G2B called gate or enable inputs. These inputs must be in the proper state to enable the
selected output. Standard M SI decoder circuits are available for 2to 4, 3t0 8, and 4 to 16
decoders. Specifics on these integrated circuits can be found in a manufacturer's data book.

Page 29 Copyright 00 2000 R.M. Laurie

Chapter 3 Integrated Circuits

Large Scale Integrated Circuits (LSI) are functional modules containing thousands of
gates. LSI chips are generally used for large functions such as microprocessor chips or
memory chips.

Very Large Scale Integrated Circuits (VL SI) are often used for integrating many LSl
functions on asingle chip. For example, VLS| microcomputers are manufactured with CPU,
memory, and I/O ports all integrated on asingle chip. It isaways achallenge for LSI or
VLSI chip designersto design the integrated circuit with a maximum amount of
functionality requiring a minimum number of pins. VLS| components often comein Pin
Grid Array (PGA) packages that are square and contain amatrix of pins, which connect to
the circuit board. Pin grid arrays are available with severa hundred pins on a single package.

Figure 3.4 MSI Dual In-Line Packages

(TOP VIEW) (TOP VIEW)
pa Q1 UrdDvee A Usevee
032z 130os s8(z2 s[ODoO
0203 2] pe cs 140D1
ptd«+ n10p7 &@Aalds 130D2
pods 10JA @B(]s 12(ID3
FCs sflB ¢1de D4

GND(]7 sfc pods [ID5
(a) GND[]8 9/]D6

(b)

3.2. Surface Mount Packages

Surface Mount Technology (SMT) describes a component packaging style in which
components mount directly to the surface of acircuit board. Unlike standard DIP'sin which
IC pins must pass through a circuit board to be soldered, surface mount component pins are
small metallic pads that mate with pads on the surface of the circuit board. Solder pasteis
used to initialy bond the SMT component pins to the circuit board pads. The solder pasteis
then heated until reflow occurs and the el ectrical connection is made between the SMT
component and the circuit board.

Pads can be spaced much closer than through-holes on a printed circuit board.
Therefore, the pin spacing and size of SMT components are usually much smaller than an
equivalent through-hole component DIP package. Pin spacing of 50 mils has become an
industry standard for SMT components.

SMT components have severa packaging styles, of which two areillustrated in Figure
3.5 and Figure 3.6. The D package isbasically aDIP, but it is approximately one-fourth the
size of athrough-hole DIP.

A chip carrier isan SMT component package that is square and contains pins on all four
sides. Figure 3.6 is an example of a 28-pin chip carrier package.

SMT components generally require less then one-fourth the area on a circuit board.
Therefore, they allow at least four times the functionality to be placed on the same sized
circuit board.

Copyright 00 2000 R.M. Laurie Page 30

Chapter 3 Integrated Circuits

Figure 3.5 Surface Mount Technology DIP Style
D Package (14 Pin DIP)

j—— 0.340" —1

T HHHAARABHHA

0.230" T n s

0.150" || ,

l L
0.060"

Figure 3.6 Surface Mount Technology Chip Carrier Style
Chip Carrier Package (28 Pin) '

- —

@))

d s 4 Y 1 v omomom]

[. u h [=

hild z a e

0.450" {{ »

0 n M-

{ro 2 ; [—==5 —+

[kAl " F n .9%0—50
”[.. 1713 e 13w s } ‘

b 0450" ——— LO.167"->l

3.3. Integrated Circuit Technologies

Integrated circuit chips can contain literally millions of gates all integrated together on a
single chip. The active electronic device used to make each gateisthe transistor. Several
different transistor technol ogies exist for making integrated circuits. Each technology offers
various advantages over other technologies, and advances are continually being made.
Figure 3.7 describes the primary attributes of several common technol ogies used today,
namely NMOS, CMOS, TTL, and ECL. The density parameter refers to the number of
transistors or gates, which can be fabricated per unit area on asilicon chip. Of the
technologies listed NM OS has the highest packing density and is the primary technol ogy
used when designing VLSI circuits. Power describes the amount of power consumed per
gate on the chip, of which CMOS is the lowest. Speed refers to the propagation delay or
switching time for a gate on the chip. There will always be afinite delay between when the

Page 31 Copyright 00 2000 R.M. Laurie

Chapter 3 Integrated Circuits

inputs of a gate change and the output stabilizes to the new value. Of the four technologies,
ECL isthe fastest and has the lowest propagation delay.

Figure 3.7 Properties of Several IC Technologies

Technalogy Dens ity Pouer Speed
HMOS ¥ery high | Medium Med iun
CHOS Hed ium Lo Hed iun
TTL L ows High High
ECL Low Yery high | Very high

Analog circuit parameters are the voltage levels and currents that are associated with
logic gate inputs and outputs. Up to now the assumption has been made that all logic gates
can be interconnected without regard to analog circuit parameters. However, analog circuit
parameters are important should the designer need to mix circuit technologies (i.e. TTL,
CMOS, ECL) or connect many logic gate inputs to a single output. Figure 3.8 describes
analog circuit parameters for several common logic families. Using these anal og circuit
parameters we can determine if logic families are compatible and how many logic gates can
be interconnected for each family. Examples 3.1 and 3.2 demonstrate the analysis procedure.

Gates of the same technology will operate at compatible voltage levels. However, there
isalimit to the number of gate inputs that can be connected to a single gate output. This
limit is called the fan-out limit, which is afunction of the input currents (I, and 1,.) and the
output currents (Ioy and 1o,).

Example 3.1 describes the procedure used to determine the fan-out limit for NMOS
gates. The output current must be greater than or equal to the input current requirements for
both the high and low states. A gate output will source current in the high state and sink
current in the low state, as depicted by the Figure 3.9a. The first step in the procedureis to
determine how many inputs can be driven high, by comparing Iy with |4 and solving for M,
as described by Step 1 of Example 3.1. Then determine the number of inputs that can be
pulled low, by comparing o with I, and solving for N, as shown in Step 2 of Example 3.1.
The smaller value of M and N determines the number of inputs that can be driven with a
single output. The quantities for M and N should always be rounded down to the nearest
whole number.

Next consider the problem of interconnecting gates of two different technologies. Both
the voltages and currents must be checked to determine if the output of one technology is
compatible with the inputs of the other technology. Referring back to the threshold window
concept described in Chapter 1, the gate output must provide a voltage above the input
threshold window in the logic 1 state and below the input threshold window in the logic O
state. This evaluation is performed in steps 1 and 2 of Example 3.2 by determining if Vo is
greater than or equal to V, and if Vo, islessthan or equal to V.. Next consider the
compatibility of the currents for the two technologies by performing the same evaluation as
was done in Example 3.1. Thisis accomplished in steps 3 and 4 of Example 3.2 by
determining if loy is greater than or equal to |,, and if 1o, is greater than or equal to I,.. The
number of inputs which can be connected to an output is the smaller value of M and N. The

Copyright 00 2000 R.M. Laurie Page 32

Chapter 3 Integrated Circuits

guantities for M and N should always be rounded down to the nearest whole number. If
either M or N islessthan 1, then the two technol ogies are not compatible. To be compatible,
all voltages and current conditions must be met for the interconnecting gate technol ogies.

Example 3.1: For NMOS logic gates, what is the maximum number of inputs that can be
driven by an output?

Step 1) Compare loy With |y 200x 10°=M (25x 10°) SolvingM =80
Therefore, one output can source current for 80 inputsin the high state

Step 2) Compare lo, with I, 1.6x10%=N (25x10°) Solving N = 640
Therefore, one output can sink current for 640 inputsin the low state

Step 3) The smaller value of M and N determines the number of inputs which can be driven
with asingle output. The quantitiesfor M and N should always be rounded down to the
nearest whole number. For this problem M islessthan N.

Answer: One output can drive up to 80 inputs.

Figure 3.8 Electrical Characteristics of Four Semiconductor Technologies

Technology
Characteristic
TIL ECL NHOS CHOS
v, (volts) 0.4 -1.60 0.4 0.1
v, (volts) 2.4 -0.74 2.4 4.9
v (volts) 0.8 -1.45 0.8 1.2
v, (volts) 2.0 -0.74 2.0 3.5
I, (amperes) 16%107° S50x100 1.6%107° 0.4x1070
-6 -3 -6 -6
qu (amperes) 40010 50:10 200:10 50010
I (amperes) 1.6x107° 0.3x10° 2.5x107° 1%10°°
I, (amperes) 40x10° 265x10 ° 2.5x107° 1x10°°

Note: The above values are typical and variations exist between gates of the same family.

Page 33 Copyright 00 2000 R.M. Laurie

Chapter 3 Integrated Circuits

Example 3.2: Can the output of a CMOS gate drivea TTL gate input?

Step 1) Compare High Level Voltages.
ISCMOS V oy greater than or equal to TTL Vi ?
YES 49V 020V

Step 2) Compare Low Level Voltages.
ISCMOS Vg, lessthanorequal to TTL V. ?
YES 0.1V #08V

Step 3) Compare High Level Currents.
ISCMOS oy greater than or equal to TTL 1 ?
YES 500x 10°A 040x 10° A, and M = 12,5,
Therefore, one output can source current for 12 inputs.

Step 4) Compare Low Leve Currents.
ISCMOS o, greater than or equal to TTL |, ?
NO 04x10°A f11.6x 10° A. and N = 0.25.
Therefore, one output can not sink current for one input.

Step 5) Have al four conditions been met?
No, The CMOS Output Cannot Pull The TTL Input Low.

3.4. Device Outputs

When designing computersit is often desirable to have multiple digital logic device
outputs connected to the same conductive path. This minimizes both the amount of
interconnecting wires between integrated circuit pins and the complexity of the digital
circuits. Circuit paths that have more than one output connected to them and are used to pass
binary information are classified as buses. Only one output may have access or "talk" on the
busat atime.

Standard logic devices have transistor switch outputs as depicted in Figure 3.9a. In the
‘1’ state, the output sources current, with current flowing from the output to the connecting
inputs. This drivestheinputsto the high or ‘1" state. Inthelogic ‘O’ state, the output sinks
current, such that current flows from the connecting inputs into the output. Thiswill drive al
inputsto the ‘0’ state. This standard configuration is often referred to as atotem-pole output.
Totem-pole outputs cannot be connected together to form buses. When the output states of
two connected totem-pol e outputs are different, the low state output may damage the high
state output. This problem is remedied by using either tri- state or open-collector output
gates.

Copyright 00 2000 R.M. Laurie Page 34

Chapter 3 Integrated Circuits

Figure 3.9 Switch Analogies for Output Devices

a) Standard Gate Output
__1 State 0 State

b) Tri-state Gate Output
1 State 0 State Disconnect State
1

0
1 +5V
Disconnect
[SR B

No Current
| L/

¢) Open-Collector Gate Output
D‘isconnect State 0 State

Disconnect

No Current

3.4.1. Tri-state Gates

The tri-state gate has transistor switch outputs, which can be modeled as a 3-position
switch as depicted in Figure 3.9b. Each position of the switch represents a different state
(either 0, 1, or Disconnect). Notice that an additional input is provided on the top of the gate,
which is called the contral input. The control input is used to selectively disconnect or drive
the output. The truth table for atri-state NAND gate is shown in Figure 3.10a. When the
Control input is 1, the gate functions normally as a 2-input NAND gate. However, when the
Contral input is 0, the gate output is effectively disconnected. This disconnect state is often
referred to as the high-impedance state (High-Z State).

Figure 3.10b illustrates a tri-state buffer with a negative logic control input. The tri-state
buffer is symbolized as a triangle pointing to the output (similar to the NOT gate without the
inversion circle). As described by the truth table, the output of the tri-state gate is
disconnected when the control input isin the 1 state. When the control input isin the O state,
the output state is the same value as the input A.

When a bus is constructed using tri-state gates, only one tri-state gate can be active at a
time. Inactive outputs must be disconnected from the bus by forcing their control inputsto
the inactive state.

Page 35 Copyright 00 2000 R.M. Laurie

Chapter 3 Integrated Circuits

Figure 3.10 Tri-state Gate Truth Table and Symbolic Representation
@

Control A B F
Control
0 00 Disconnect
0 01 Disconnect
0 10 Disconnect A O
0 11 Disconnect F
1 00 1 B #——
1 01 1
1 10 1
1 11 0
(b)
Control
Control A F
0 010
0 111 A F
1 O | Disconnect
1 1] Disconnect

3.4.2. Open-Collector Gates

Open-collector gates function as standard gates, but have two possible output values
either Disconnect or the O state. The output of an open-collector gate contains only one
switching transistor which switches the output to ground as shown in Figure 3.9¢c. Current
cannot flow out of an open-collector output in the Disconnect state; therefore, Ioy = 0 and
the output is effectively disconnected. When the output isin the O state, the output will sink
current to ground and all connecting inputs will be driven to the O state. The truth tables for
open-collector gates have the same form as standard gates; however, when the output is 1 for
astandard gate it will be disconnected for an open-collector gate. The truth table for an
open-collector buffer is shown in Figure 3.11a

Since the output of an open collector gate cannot source current in the 1 state (asa
standard output), an external voltage source must be connected to the output. This voltage
source is required to drive any connecting inputsto a 1 state voltage level (i.e. 2 to 5 volts).
A pull-up resistor must be connected between the voltage source (i.e. +5V) and the open-
collector output. The pull-up resistor is used to limit the current entering the output in the
low state.

[llustrated in Figure 3.11b is a simple circuit composed two buffers, which are used to
generate an output bus F. The circuit has two buffers with open-collector outputs and one
pull-up resistor. If either or both inputs A and B are in the O state, then at |east one open-
collector output will sink current and drive output bus F to the O state. Only when both
inputs A and B arein the 1 state, will no current flow and output F will be pulled up to the 1
state. The truth table for this circuit is shown in Figure 3.11b. As depicted by the truth table,
thiscircuit is often called awire-AND circuit.

Copyright 00 2000 R.M. Laurie Page 36

Chapter 3 Integrated Circuits

Open-collector gates can be used to construct buses, with more than one output
connected to the same conductive path. Inactive open-collector outputs must remain in the
disconnect state while the active output transmitsits digital signal. In Figure 3.11b, if the
buffer connected to Input A were active and the other buffer inactive, then Input B must be
in the 1 state while Input A transmits data.

Figure 3.11 Open-Collector Buffers Configured as Wire-AND Circuit

@) alF
0|0 A F
1 |Disconnect

3.4.3. Drivers

Drivers are used as an output device when the application requires current and voltages
that exceed those available with standard logic devices. Drivers are used as output devices
for applications such aslights, displays, and relays.

High voltage open-collector output gates are often used as drivers for such applications
asturning on light emitting diodes (LED). These gates will sink more current than will
standard gates, because their output transistors are designed to handle more current.

When using drivers, it isimportant to examine both the input compatibility and the
output rating for both voltage and currents.

Page 37 Copyright 00 2000 R.M. Laurie

Chapter 3 Integrated Circuits

Problem Set

1. Using the integrated circuits shown, draw lines between the pins of the DIPs to construct
a digital circuit which will implement the Boolean expression
X=A+BC +D for Output X based on inputs A, B, C, and D. The power and ground

connections are drawn.

D
ummummi ummummi

2. Using the integrated circuits shown in Figure 3.2, draw circuits for the following Boolean
expressions.
a) A+BC
b) A(B+C)D
c) ABC+BC+A
d) (AOB)OC

3. A digital circuit is designed in which power consumption is minimized. Which one of the
integrated circuit technologies should be considered first?

4. A digital circuit is designed which requires very high speed switching. Which
integrated circuit technologies should be considered first?

5. A VLSI digital circuit is designed which requires a very high density of circuitry to
be placed on a single silicon chip. Which integrated circuit technologies should
be considered first?

Copyright 00 2000 R.M. Laurie Page 38

Chapter 3 Integrated Circuits

. Using the table of Figure 3.8, determine if an NMOS output is compatible with a
TTL input. If they are compatible, determine how many TTL inputs can be driven
by a single NMOS output.

. Determine how many CMOS inputs can be driven by a single CMOS output.

. Draw the logic gate symbol and truth table for the following tri-state gates.
a) Tri-state Inverter

b) Tri-state 2-Input OR Gate

c) Tri-state 3-Input NAND Gate

. Draw the truth table for the following circuit which uses Inverters with open
collector outputs. Why is this circuit called a Wire-ORed circuit?

+5V

Page 39 Copyright 00 2000 R.M. Laurie

Chapter 4 Sequential Logic

Chapter 4. Sequential Logic

Sequential logic devices are used to construct sequential circuits such as computer
memories, counters, frequency dividers, and data converters. Sequentia circuits differ from
combinational circuits because their outputs are determined not only by the current state of
the inputs but also by past behavior.

Timing diagrams describe the state of input and output signals of adigital circuit as
they vary with time. Timing diagrams are used to analyze sequential circuits because
sequential logic devices are afunction of not only the current state of the inputs, but also the
past behavior of the output. Figure 4.1 illustrates atiming diagram for a sequential circuit
with two inputs (A and B) and one output (Q). Time islocated on the horizontal axis while
the state of the signal is shown on the vertica axis. Thelogic variables (A, B, and Q) are
represented as waveforms in either the 1 or O state as they vary in time.

Figure 4.1 Timing Diagram

1 S
Input
(4)

| |
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

1-
(B) L 1 1 1 L 1) L)
0 T T 1 ! Ly T T T 1
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
14
Output
Q) 1 1 L 1 1 1
0 ¥ T ! L L] L
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Time (uSec) --—

Most sequential logic circuits utilize a clock signal to synchronize components.
Typicaly, clock signals are either a periodic square wave (Input A of Figure4.1) or a
periodic pulse waveform (Input B of Figure 4.1), for which the period is constant and the
transition time between states is minimized. The period of the waveform is the time required
to complete one full cycle. In Figure 4.1, Input A has a period of 1.0 pSeconds and Input B
has a period of 2.0 uSeconds. Often the clock signal is specified not by its period, but by its
frequency. Frequency is specified in units of cycles per second, which is usually called Hertz
(Hz) after the 19th century physicist Heinrich Rudolf Hertz. Computer circuits have very
high clock frequencies, so the terms Kilo-Hertz (KHz), Mega-Hertz (MHz), and Giga-Hertz
(GHz) are used to specify units of thousand cycles per second, million cycles per second,
and billion cycles per second respectively.

Copyright 00 2000 R.M. Laurie Page 40

Chapter 4 Sequential Logic

The frequency of the waveform is found by taking the reciprocal of its period. The
frequencies of inputs A and B are determined to be 1.0 MHz and 500 KHz, as shown below:

_ _ 1 _ 1 _ 6 Cycles _
Frequency of A = fA— Poriod por3 = 1.0 x 10 Second 1.0 MHz
1.0 x 10 Sec
_ e = 1 _ 1 - 3 Cycles _
Frequency of B = fB— Period 500 x 10 Second 500 KHz

2.0 x 10°° sec

4.1. Sequential Logic Devices

Sequential logic devices utilize an input signal called a clock input to trigger themselves
at specific moments in time. The output of the device can only change when atrigger
condition occurs. Trigger conditions can be either level sensitive or edge sensitive.

Level sensitive sequential components are called latches, and trigger in the one state.
The D-latch is an example of alevel triggered device.

Edge sensitive sequential components are called flip-flops. Three flip-flops will be
discussed: J-K, T, and D flip-flops. Flip-flops are either positive or negative edge triggered.
A positive edge occurs when the clock signal changes fromthe ‘0’ to ‘1’ state, as shown in
Figure 4.1 for Input A at times 0.5, 1.5, 2.5, 3.5, and 4.5 microseconds. A negative edge
occurs when the clock changesfromthe ‘1’ to ‘0" state, as shown in Figure 4.1 for Input A at
times 1.0, 2.0, 3.0, and 4.0 microseconds. Flip-flop inputs are read at the instant a transition
edge occurs. The output may change state the instant after the transition edge occurs.

4.1.1. J-K Flip-Flop

The JK flip-flop has three inputs (J, K, and C) and two outputs (Q and Q), asshown in
Figure 4.2a. The output Q is always the opposite state of output Q.

Trangition tables describe what happensto the latch or flip-flop output after a clock
trigger condition occurs. An example of atransition table is shown if Figure 4.2b. The output
after aclock trigger condition (Q") is afunction of both the current state of the inputs at that
instant and the state of the output before the trigger condition occurs (Q").

Thetransition table looks like a truth table, except the output Q is a function of both the
current state of the inputs and the past state of the output. The output column of the
transition table, denoted by Q" is the value of the output (Q) after some instant in time. The
symbol Q™ denotes the output value before that instant in time. The output can only change
at the instant after a clock trigger condition has occurred; otherwise, the other inputs are
ignored and the output cannot change.

Thetransition table for the J-K flip-flop is shown in Figure 4.2b. The Jand K inputs are
examined the instant the clock trigger edge occurs, in order to determine the state of output
Q theinstant after the clock transition edge.

When the Jand K inputs are both ‘0’ (at a clock trigger edge) the output Q remains
unchanged. If J=0 and K=1, then output Q isreset to ‘0. If J=1 and K=0, then output Q is set
to one. If both Jand K inputs are in a one state at the clock trigger edge, then output Q will
change to the opposite state.

This condition is described by the last row of the transition table. The symbol Q™ of the
output column signifiesthat if the output Q was a one before the trigger edge, it becomes a
‘0’ after; and a*0" beforethe trigger edge resultsin a one after. Thisis often described as an
output toggle.

Page 41 Copyright 00 2000 R.M. Laurie

Chapter 4 Sequential Logic

Figure 4.2 J-K Flip-Flop (- Edge Triggered)

a) Device Symbol b) Transition Table
JK +
J Q— b
(-FF) 00/ o
—C Q
o110
= 10 1
——-1!(QF— 11 9~

JK flip-flops comein either negative edge or positive edge triggered varieties. If the
flip-flop is positive edge triggered, it is denoted by the symbol "+FF". If the flip-flopis
negative edge triggered, it is denoted by the symbol "-FF". A timing diagram for a negative
edge triggered J-K flip-flop isillustrated in Figure 4.3. Aswith logic gates, some time delay
does exist between the time when the inputs are read and the time the output changes state.
Thisis called the propagation delay of the flip-flop.

Figure 4.3 Timing Diagram for the J-K Flip-Flop

ol 0 .0 .0 .0

——
.

ot T T | T T
1
(J)
L 1 1 L 1 L 1 1 1
of T T T 1 4 T T T ¥
1
(x)
1 L 1 L $ 1 i 1 1
ot 1 T 1 T T ! ¥ T 1
Flip-Flop 1
(- Edge) 1 1 1 L
(Q) ot $ { T 1 t t
time -

4.1.2. T Flip-Flop

The T flip-flop (Toggle flip-flop) has one input (T) and two outputs (Q and Q), as
shown by its device symbol in Figure 4.4b. It can be constructed using a J-K flip-flop with
both the J and K inputs connected to logic ‘' 1’ state and using the clock input asthe T input.

T flip-flops are either positive or negative edge triggered. The output (Q) will toggle
states only when atrigger edge appears on the T input. If the output (Q) was‘1’, it becomes
‘0, andifitwasa‘0’, it becomes*1’.

Otherwise, when the trigger edge is not present, the output state will not change.

Copyright 00 2000 R.M. Laurie Page 42

Chapter 4 Sequential Logic

Thetiming diagram of Figure 4.5 illustrates the operation of a positive edge triggered T
flip-flop for a non-periodic waveform. When the T input of a T flip-flop is connected to a
periodic square wave, it operates as a divide by 2 frequency divider with the output
waveform being half the frequency of the input.

Figure 4.4 The T Flip-Flop (+Edge Triggered)

a) Derived Logic Circuit b) Device Symbol c) Transition Table
+Edge T Flip-Flo
le4J Q—-eQ Q— g P P
(+FF) _‘ (+FF) T] Q+
Te———C T -
_ + Edge]Q- = Toggles
1e— K QF— Q Qf—

Figure 4.5 Timing Diagram for a Positive Edge Triggered T Flip-Flop

14
(T)
L 1] 1 1 ' [l 1 i
0 Ll | 1 Ll LE ¥ Ll ¥ ¥
14
(Q)
L 1 Il 1 —) 1 L Y 1
0 I 1 L L L] LB ! LI L
time -

4.1.3. D Flip-Flop and Latch

The D flip-flop (Dataflip-flop) can be used to store one bit of data. It is constructed by
using aJK flip-flop with an inverter connected between inputs J and K, asillustrated in
Figure 4.6a. The D flip-flop has adatainput (D), a clock input (C), and two outputs (Q and
Q). When atrigger edge occurs on the clock input, the state of output Q will become the
state of input D. Therefore, the state of the D input is stored at output Q until the next clock
trigger edge occurs. This relationship is depicted in the transition table of Figure 4.6¢.
Timing diagrams for both positive edge and negative edge triggered D flip-flops are
illustrated in Figure 4.7.

D latches differsfrom a D flip-flopsin that they are level triggered. The transition table
for the D latch isthe same as the D flip-flop. When the clock input isin the 1 state the Q
output of a D latch will be the same state as the D input. When the clock input isin the O
state the data at the output will be "latched" and will not change. A timing diagram for the D
latchisillustrated in the last diagram of Figure 4.7.

4.1.4. Preset And Clear Inputs

Flip-flops commonly have preset and clear inputs, asillustrated in Figure 4.8. These
inputs are shown on the top and bottom of the flip-flop and are symbolized with an inversion
circle by the labeled input. Sometimes these inputs are abbreviated such that R = Clear and S

Page 43 Copyright 00 2000 R.M. Laurie

Chapter 4 Sequential Logic

= Preset. Preset and clear inputs are unclocked negative logic inputs and take priority over all
other inputs.

When the Preset or Sinputisinthe ‘0 state, the output Q isset to ‘1. When the Clear
or Rinputisinthe‘0 state, the output Q is cleared to ‘0. At no time should both the clear
and preset inputs be activated simultaneously, as the output state is then undefined.

Figure 4.6 D Flip-Flop (- Edge Triggered)

a) Derived Logic Circuit b) Device Symbol c) Transition Table
+
D} Q
D ’ 3 Ql—Q AD(_PF)Q"‘
(~FF) olo
—C 1{1
Ce K Q—Q —1° =

© [_
ol . .

1 1 1 1 L L
oT T 1 T T 1 1 1 -1 1
D Flip-Flop |
(- Edge) L 1 1 1 1 1 L
Q)) | -1 T 1 T 1 T
D Flip-Flop
(+ Edge) 3 1 1 1 1 1 L
Q)) 1 T 1 T T ™ 1
D Latch 11 r
Q) L 1 1 1 1 1 L L
ol = T T T 1 ! 1 1
time >

Figure 4.8 J-K Flip-Flop with Preset and Clear Inputs

(5 Preset

—3 o
(-FF)

—C

-1k Q

Copyright 00 2000 R.M. Laurie Page 44

Chapter 4 Sequential Logic

4.2. Timing Diagram Construction For Sequential Circuits

Timing diagrams have been constructed for single flip-flops and latchesin Figures 4.1
through 4.7. Given timing diagrams for the inputs, the output timing diagram can be drawn
for any sequential logic device. The procedure for making atiming diagram is outlined
below:

Step 1: Determine the type of sequential logic device, including whether it islevel

triggered, or positive or negative edge triggered.

Step 2: Mark triggered clock edges (flip-flop) or trigger area (latches) where atransition
of output may occur.

Step 3: Determine the state of al inputsto the sequential logic device just before a
trigger condition occurs.

Step 4: Use theinput values and the transition table for the given sequential logic
device to determine the value of output Q after the trigger condition. Mark the state of
the outputs on the timing diagram, until the next transition of the output can occur. Go
back to Step 3.

Note: Q =valueof Q beforetransition. Q" = value of Q after transition.

This same procedure can be applied to construction of timing diagrams for sequential
circuits with more than one sequential device. The procedure is applied by recognizing that
the outputs of some sequentia devices are connected to the inputs of other sequential
devices. Therefore, after the timing diagram for an output of one device has been found, it
may be used as an input to construct the timing diagram for the connecting device. This
processis similar to the process used to evaluate combinational circuits using truth tables.

Verify the timing diagrams for single sequential logic devices of Figures 4.1 through
4.7. Then examine and verify the timing diagrams for the sequential circuits discussed in
Section 4.3.

4.3. Sequential Circuits

Sequential circuits are constructed by interconnecting flip-flops, latches, and logic
gates. Sequential circuits are used to perform many operations required by a computer.
Discussed in this section are several smple sequentid circuits that are found in computer
hardware. These sequential circuitsinclude frequency dividers, counters, data registers, shift
registers, and data converters.

4.3.1. Frequency Dividers and Counters

Frequency divider circuits are used to generate an output frequency that is a fraction of
the input frequency for a periodic waveform. Either T flip-flops or J-K flip-flops can be used
to construct frequency divider circuits. When flip-flops are used to make a frequency divider
circuit, the frequency of the input is divided by an integer value to generate the output
frequency.

Page 45 Copyright 00 2000 R.M. Laurie

Chapter 4 Sequential Logic

Thecircuit of Figure 4.9 is adivide-by-eight frequency divider. It is constructed using
three T flip-flops configured as shown. Each T flip-flop will generate, on its output, a divide-
by-two operation of the input frequency. Therefore, a circuit in the configuration of Figure
4.9, with n T flip-flops will be a divide-by-2" frequency divider. This circuit could also be
constructed using J-K flip-flops with both the J and K inputs connected to alogic ‘1’ state.

Figure 4.9 Divide-by-Eight Frequency Divider or Three Bit Binary Counter

Q, Q
¢ (-PR) (ke
(-FF) -FF -FF
Input &———T T T Output
Ql— Q- Q-
14
. Isisiainininiainlin
O) 1 L 1 ¥ ¥
]A H H H H H H H H H
Q, 0 1 0 1 0 1 0 1 0 1—1
0 ¥
1
Q 0 ¢ 0 1 1 0 0 1 1 0 ‘o0
B L L 1 1 1
of 1 1 T 1 1
1
Q 0 0 i 0 0 1 1 1 1 0 ‘o
Output {- 3 — % ' - +

time -

JK flip-flops with clear inputs are used to construct the divide-by-ten frequency divider
of Figure 4.10. Note that the output Q will complete one full period after ten periods of the
input signal. The NAND gate is used to reset the circuit after ten input cycles. The
propagation delays for both the logic gate and the flip-flops are relatively small when
compared with the input frequency. Therefore, after every ten clock cycles of the input, the
output of the NAND gate pulses from the 1 to 0 and back to 1 state.

A frequency divider circuit, that is configured like Figure 4.9, can be used as a binary
counter by accessing the output of each flip-flop. The divide-by-eight frequency divider
circuit of Figure 4.9 is also a 3-bit binary counter. Output Q, represents the least significant
bit, Qg the next most significant bit, and Qc the most significant bit of a three bit binary
number. Notice on the timing diagram of Figure 4.9, when the outputs are read verticaly
after each negative edge, the output states (Qa, Qs, and Qc) represent a binary counting
sequence (000 through 111). Thisthree bit binary counter has eight distinct states of itsthree
outputs. The circuit of Figure 4.10 counts in binary from zero to nine. The counter has ten
distinct states of its outputs and for thisreason it is called a decade counter.

Copyright 00 2000 R.M. Laurie Page 46

Chapter 4 Sequential Logic

Figure 4.10 Divide-by-Ten Frequency Divider or Decade Counter

S\ %8 % Output = 1?1)
le—J Q 1e—J Q leJ Q le4J
Input (~FF) (-FF) (-FF) (-FF)
e——FHJC C C C
1K Q}— 1K Q— 1K Q— 1e—K Q—
O Clear ? Clear (E Clear ? Clear

1

woe | L VLUV
ot 13 T — T T ™ N S
1.

QA 0 1 0 1 0 1 0 1 0 1 0 l 1
or T
14

Q 0 0 1 1 0 0 1 1 o ‘0 l 0 0

B 1 L 1 1 1 1
0 ¥ 1 T ™ T T T
\

Q o * 0 * 0 0 1 1 1 1 o+ 0 ' 0 0

C 1 L A L 1 1 1 1 l
0 T 1 T 1 T T ™ | T
14

NAND L L L 1 1 1 1

Gateg } } — 1 1 1 T 1 T 1

Output) 0 i o 0 ' o0 0 0 0 1 1 0 io0

QD L L L L L 1 1 1 1
0 1 T 1 1 1 t t T -t

time -3

4.3.2. Data Registers

Dataregisters are used to store and retrieve binary data. Data registers are constructed
using D-latches, asillustrated in Figure 4.11. A 4-bit data register can be used to store and
retrieve four bits of datafrom a bi-directional data bus. In a store or write operation, data
present on the data busis stored in the D-latches by applying atrigger pulse at the clock
inputs. In aretrieve or read operation, datais gated from the outputs of the latches through
the tri-state buffers to the data bus. The read operation uses the bi-directional data bus as
register outputs, and the write operation uses the data bus as register inputs.

Page 47 Copyright 00 2000 R.M. Laurie

Chapter 4 Sequential Logic

Figure 4.11 Four Bit Data Register

D; D, D, D,
1 |
0 Q D Q D Q D Q
(Latch) (Latch) (Latch) (Latch)
C c C [— c
Write Enable & [_ |— !.— !
Read Enable - l

4.3.3. Shift Registers

Shift Registers are a class of data registersthat are used to shift a group of bits to the
left or right. Shown in Figure 4.12 is a shift register, which will shift agroup of four bitsto
theright. J-K flip-flops are used to construct this shift register such that their Jand K inputs
will always be opposite in state. Since thisis the same configuration used to construct aD
flip-flop, this shift register could also be constructed using D flip-flops.

The operation of the shift register can be best understood by examining and verifying
the shift register timing diagram of Figure 4.12. The Reset input is used to initially clear all
flip-flop outputs. Theinput value is then stored in the left-most flip-flop while its previous
output value is stored in the next flip-flop to the right. The timing diagrams for the outputs
illustrate the data shifting properties of the shift register. Notice the data at output Qp isthe
same as the data on the input; however, it will be delayed close to four clock cycles. Shift
registers can be used as a delay device with the maximum delay time equal to the number of
flip-flops multiplied by the clock period.

The clock inputs of every flip-flop of the shift register are tied together so the flip-flops
trigger at exactly the same time. Sequentia circuits with all flip-flop clock inputs connected
to one clock source are called synchronous circuits. With synchronous circuits, the clock
input is used to synchronize the flip-flops to perform the desired function. Figures 4.11 and
4.12 are considered synchronous circuits. Sequential circuits with the clock signals not
coming from a common source are called asynchronous circuits. The counter circuits of
Figures 4.9 and 4.10 are examples of asynchronous circuits.

Copyright 00 2000 R.M. Laurie Page 48

Chapter 4 Sequential Logic

Figure 4.12 Four Bit Shift Register

Data Q, Q Q Q,

quut 1 I' _J
J Q ' J Q ¢ J Q J Q
(-FF) (-FF) (-FP) (-FF)
~— C — C ’— C —{ C
K Q K Q K Q Q

Q K Q
j) Clear (?Clear O Clear Clear
Clockes
Resete
14
oo | VL LV OO}
0 T T T =1 o | T 1 1 T | |
14
Reset
1 1 1 1 1 1 1 L 3 1 1
0 ! 1 1 T 1 1 L T 1 T T
Data 11
Input 1 1 1 1 L 1 1 1 1 1 1
ot 1 T T 1 1 1 1 1 1 T 1
1]
Q 1 1 1 i L
ot T 1 T T T
1
QB
1 L 1 1 1 1
ot T 1 1 1 T T
14
QC 1 1 1 1 1 1
0 T T 1 1 1 1
1
9 L 1 1 1 1 L l
0 1 1 T 1 T 1 T

time -

4.3.4. Data Converters

Data can be transmitted one bit at atime or asa group of bits. When datais transmitted
onebit at atimeit iscaled serial data. Only one wire is required to transmit seria data.
When severd bits are transmitted simultaneously through paralel conductive paths, it is
called parallel datatransmission. A digital devicethat is used to perform conversions
between parallel and serial dataformatsis called a data converter.

Page 49 Copyright 00 2000 R.M. Laurie

Chapter 4 Sequential Logic

Generally, the number of bits per second of data that can be transmitted on asingle
conductive path is constrained by its conductive media (e.g. wire, printed circuit path, and
fiber optic cable). When the required data transmission rate exceeds the maximum bit rate
for the media, then parallel datatransmission must be used instead of serial data
transmission. Four bit parallel data can transmit four times as many bits per second as seria
datafor the same speed media. Of course, four parallel conductive paths would be required
for parallel data, while only oneisrequired for serial data transmission.

4.3.4.1. Serial to Parallel Data Converter

The shift register of Figure 4.12 can be used as a seria to parallel converter. The single
input shown is used as the serial input. The four flip-flop outputs are used as the four paralel
outputs of the data converter. To read the parallel data properly, the data converter outputs
must be read at one quarter the frequency at which the datais loaded into the seria input.
Data should only be read when the outputs Qa, Qs, Qc, and Qp are stable. This can be
accomplished by reading the data on the fifth, ninth, and thirteenth positive edges of the
clock.

4.3.4.2. Parallel to Serial Data Converter

A 4-bit parallel to serial data converter can be constructed using four D flip-flops and
four NAND gates as shown in Figure 4.13. The serial datais transmitted at four times the
frequency at which the parallel dataisloaded. This can be verified by comparing the Clock
input waveform with the Load input waveform.

The 4-bit paralld to seria converter isinitialy reset to generate a“0’ state at the outputs
of al flip-flops. The Load input is then pulsed high to load the flip-flops with the data from
the parallel inputs (D3 through D).

The Clock input to this synchronous circuit is a periodic pulse waveform, which is used
to synchronize the parallel to serial datatransfer. The flip-flops are positive edge triggered.
Serial data should be read at the negative edges of the Clock input because the Serial output
is stable at the negative edges.

4.4. Sequential Integrated Circuits

Flip-Flops and latches are manufactured as SSI circuit chips. The sequentia circuits
discussed in Section 4.4 are aso available asM S| circuits. When designing a sequential
circuit it is best to first determine which sequential functions can be performed using MSI
chips and then use individual flip-flops (SSI chips) to complete the design. Descriptions of
these integrated circuits can be found in a manufacturers data book, or downloaded from the
Internet as a PDF document (e.g. http://www.ti.com, http://www.national.com)

Copyright 00 2000 R.M. Laurie Page 50

Chapter 4 Sequential Logic

Figure 4.13 Parallel to Serial Data Converter
D, D D D,

’ 2 1
Load e— I T 4- T

Preset Preset Preset Preset
Oe—D Q D Q D Q D Q}—eSerial
(+FF) (+FF) (+FF) (+FF) Output

c Q c Q c Q c Q
J- ?Clear [' ¢ Clear f S) Clear '_ Clear
Clocko—+ . .

Reset &
1
ctock | | [[] NI
ol T | T T | T T 7 1
1.
Reset
1 1 1 1 1 1 1 1 1 1 1
or. T T T T T T | T T T T
1:
] i i
1 1 1 1 1 1 1 1
oV T \ | T 1 T T L T T T
Input 11
Dy 1 1 1 1 1 1 1 1 3 1 1
ot ¥ 1 T T T T T T 1 |
Input 11
D, 1 1 1 1 1 i i i 1 3 i
ol T 1 T T 1 T T 1 T T =T
Input 1
D, 1 1 L 1 1 1 1 1 1 i L
o 1 T 1 T T T T 1 T T 1
Input 11
D 1 i L L 1 1 1 i 1 1 1
o ov T 1 T 1 T T T T T 1 T
Seria111
Output 1 1 1 1 i
0! T T T T T
time -

Page 51 Copyright 00 2000 R.M. Laurie

Chapter 4 Sequential Logic

Problem Set

1) Complete the timing diagrams below for the following sequential logic
devices. All devices are initially cleared at t=0.
a) D Latch (1 level triggered)

b) D Flip-Flop (negative edge triggered)

14
Clock | l l I | I | | | I | | I I ' I ! l l | | I
0 L R T T T 4 T T T 1 1
Input L I
D 1 L L L 1 1 ! 1] L 1
0 1 T 1 1 T T =T 1 !
(a) 1
Output
Q 1 1 1 L 1 L i 1 1 L 1
ot T T T 1 ! T T 1 T ~1 1
(b) 1
Output
1 1 1 1 1 1 1 i 1 L L
Q ot 1 T T ! v T 1 T 1 1
time >

Copyright 00 2000 R.M. Laurie Page 52

Chapter 4 Sequential Logic

2) Complete the timing diagrams below for the following sequential logic
devices. All devices are initially cleared at t=0.
a) J-K Flip-Flop (negative edge triggered)

b) J-K Flip-Flop (positive edge triggered)
¢) J-K Flip-Flop for output (3 (positive edge triggered)
d) J-K Flip-Flop with Preset and Clear Inputs (hegative edge

triggered)
14
Clock ! | ‘ l | l l l ‘ l ‘ I l l l I | I I l i l
0 T T T | [EER | T | B | 1 T
1
Input l ’ r
3 1 L 1 i L i 1 1 | 1
0 T 1 T 1 T 1 | 1 | T 1
Input H ;_
K L 1 1 1 N 1 1 1 L l i
0 T T T T 1 T 1 1 1 T T
Input H
§ 1 L 1 L 1 1 1 L i 1
0 T | T T T T 1 1 L T L
Input .
s 1 L 1 1 1 1 [1 L i 1
0 T T 1 T T T T T T T T
(a) 1
Output
Q 1 1 i 1 1 1 1 1 L 1 1
of T T T T T 1 T T 1 T 1
(b)
OQutput
Q L L 1 1 1 1 1 1 1 1 1
0 T T T T 1 T T T i T T
(¢) 2
Output
Q L 1 1 i L 1 1 1 L 1 1
0 1 1 1 T i T T T L T T
d) 1
Output
Q 1 1 1 [L 1 1 1 1 1 L
ot 1 T L 1 L 1 T T 1 1 T
time -2

Page 53 Copyright 00 2000 R.M. Laurie

Chapter 4 Sequential Logic

3) Complete the timing diagram below for outputs Qi, Q», and Qs. The
Flip-Flops are negative edge triggered and initially cleared at t=0.

Input Output Output Output
De——D Q—Q Q Q, 1eJ Q—eQ
1 2 3
Input
C ¢———C — T C
Q al— 14K 6._
14
Input
C
0 LI
14
Input
D
1 i 1l 1 1 L 1 L 1
0 1 T T L T T 1 T I
it
Output
Ql
L i L] L L 1 L 1
0 1 T T L 1 1 1 T T
14
Output
QZ
1] i N] -1 1 L L 1
0 1 LE T T T L] 1 1 T
11
Output
Q
1 1 1 1 1 1 -l L [l
0 I 1 1 T LI T | | ¥ |
Copyright 00 2000 R.M. Laurie Page 54

Chapter 4 Sequential Logic

4) Complete the timing diagram below for outputs Q;, Q», and Qs. The
Flip-Flops are negative edge triggered D Flip-Flops and initially cleared
at t=0.

Output Output Output.
Q Q Q
Input 11 Iz 3
De D Q ’ D Q * D QF———J
Input

Q|
{

ol
|

Q|
|

14
Input
C
0 T
1-
Input
D
1 1 1 i 1 L 1 L |
0 T T T T T T T T T
.
Output
Ql
L L 6 L 1 L L L 1
0 T -1 1 1 T L 1 T]
1-
Output
QZ
1 L L 1 1 1 L L -1
0 T ¥ 1 T T T T T T
1-
Output
Q3
1 L L L 1 1 i 1 1
0 L T 1 T T T 1 T L
time -

Page 55 Copyright 00 2000 R.M. Laurie

Chapter 4 Sequential Logic

5) The J-K Flip-Flops are negative edge triggered and are initially reset at
t=0. Draw the waveforms for Qa, Qg, and Qc. Show this is a divide-by-
six frequency divider. Is this a synchronous or asynchronous circuit?

Q Q Output
J oA J Q B 1o Q—=Q
Input (-FF) (-FF) (-FF)
~— C C C
1e—K Ql— le—{K Q le-K Q—
Q Clear O clear Clear
Reset
1
Reset
R i 1 1 1 1 1 i 1 1 { L
ol 1t 1 | T ™ T T T T =T 1
1
Clock ! | l | l l l l l l I I] | l l l I I I I l
ot 1 1 T T T N BN 1T T
Outputh
Q, 1 L 1 1 L 1 1 1 1 1 '
0 T 1 T T | T T T T T T
OutputH
QB L L 1 1 L 1 1 1 1 L L
0 T T | 1 ™ ™ 1 T T T L]
Outputh
Q L 1 1 L 1 L L 1 1 L L
0 T T T 1 T T T T T N |
time -

6) Use the divide-by-6 frequency divider of Problem 5 to design a divide-
by-twelve frequency divider. Draw the circuit diagram for this
frequency divider.

Copyright 00 2000 R.M. Laurie Page 56

Chapter 5 Number Systems And Codes

Chapter 5. Number Systems And Codes

The decimal number system (base 10) has become the standard number system used by
people for counting and mathematical operations. The base ten system is used by most
cultures primarily because people have 10 fingers. Each finger is used to represent one of ten
possible values that adigit can assume.

Computers do not have 10 fingers. However, they are made up of e ectronic switches
that represent Boolean variablesin either a 1 or 0 state. For thisreason, the binary (base 2)
number system is used to represent the states of Boolean variables. A single binary digitis
caled abit, whichisin either a1 or O state. A group of eight bitsis called abyte. A half
byte, which isa set of four bits, is often called anibble.

Discussed in this chapter are the data formats used by computers to represent numbers
and alphanumeric data. Also, binary addition is presented for both signed and unsigned
numbers. The base of anumber is denoted in this chapter by the subscript 2 for binary, 10
for decimal, and 16 for hexadecimal (base 16). In thistext, commas are used with binary
numbers to separate groups of four bits, which make the number more readable.

Hexadecimal (Base 16) = 17

16
Decimal (Base 10) = 2310 These numbers are equivalent
magnitudes in different bases
Binary (Base 2) = 0001,01112

5.1. Unsigned Binary Numbers

Binary numbers are base two numbers, which can be used to represent various integer
guantities. The base two number system operates amost the same way as the decimal
system; However, only two symbols (0 and 1) exist for each bit while ten symbols (0
through 9) exist for each digit of the decimal system.

Figure 5.1 compares the decimal and binary number systems. Both number systems are
right justified. That is, the least significant bit (LSB) of a binary number is always the right-
most bit, just asthe least significant digit of adecimal number isthe right-most digit. The
next significant bit is always a power of two higher than the previous bit. The most
significant bit (M SB) represents the highest power of two required for representing a number
and isthe left-most bit.

5.1.1. Binary to Decimal Conversion

The four bit binary number of Figure 5.1 is easily converted to decimal notation.
Simply sum the powers of two for all bitswith a 1. Bits with a 0 are not added to this sum.
Therefore, the conversion of 1011, to decimal is performed by the sum:

(1)2°+ (0)2° + (1)2' + ()2°=8+2+1=114

Generaly, the minimum data word length for microcomputersis 8 bits or one byte. To
convert any binary number to decimal, determine the powers of two corresponding to each

Copyright 00 2000 R.M. Laurie Page 57

Chapter 5 Number Systems And Codes

bit with avalue of 1, and add up the appropriate magnitudes representing the power of two
for each bit. For an eight-bit number represented by the eight bits b; bs bs b, bz b, by by the
least significant bit, by, represents the 2% or the 1's place and the most significant bit, b,
represents the 2’ or the 128's place. Conversion of an eight-bit number is represented by the
following equation:

b,2" + bg2® + be2® + b2* + bs2® + b,22 + b2t + by2°
= b7 (128) + bs (64) + bs(32) + by (16) + b (8) + b, (4) + by (2) + by (1)

The largest number that can be represented by eight bits would have a 1 for dl eight
bits b, through by. This correspondsto 1111,1111, = 255,4. The binary number 0000,0000,
represent decimal zero. Therefore, eight bits may be used to represent any integer decimal
number within the range of 0 to 255 inclusive. Additional bits are required to represent
decimal integers greater than 255.

Figure 5.1 Decimal and Binary Number Systems

Humans use Base 10 (10 fingers) Computers use Base 2 (On/Off)
10 Symbols: 0-9 2 Symbols: 0-1
Most Significant Least Significant | Most Significant Least Significant
Digit (MSD) Digit (LSD) Bit (MSB) Bit (LSB)
10 2
Powers of 10 Powers of 2
MSD l LSD MSB ! , LSB
103 102 1o} 10° 23 22 21 20
1000 100 10 1 8 4 2 1
6 x 1000 = 6000 1x8= 8
4 x 100 = 400 O0x 4 = 0
7 x 10 = 70 1x2= 2
2 x 1 = 2 1x1= 1
647210 1110

5.1.2. Decimal to Binary Conversion

To convert adecimal number to a binary number is more tedious than binary to decimal
conversion. Tables such as Figure 5.2 are often used to facilitate these conversions. As an
aternative to tables, a direct mathematical procedure is shown in Example 5.1. Consider the
decimal number 19. Conversion is performed using successive divisons by 2. First 19 is
divided by 2 which will generate aquatient of 9 and remainder of 1. Next divide the
preceding quotient 9 by 2, which will generate the next quotient of 4 and remainder of 1.

Page 58 Copyright 00 2000 R.M. Laurie

Chapter 5 Number Systems And Codes

Example 5.1: Convert 19 to Binary
Q R
1

(LSB Least Significant Bit)

= N b O ©
-

NDNDNDNDN
1

OFrL N MO

1
1
0
0
1

(MSB Most Significant Bit)
Therefore 1910 = 100112 = 0001,00112

Continue the division by 2 until a quotient of 0 exists. The binary equivalent is
determined by examining the remainder column and taking the final remainder as the most
significant bit and the first remainder as the least significant bit. Therefore, 19 decimal is
represented by the binary number 10011. Binary numbers are often zero filled to eight bits
resulting in 0001,0011 to represent decimal 19.

Figure 5.2 Unsigned Decimal to Binary Conversions

Decimal Binary Decimal Binary
0 00000000 32 00100000
1 00000001 33 00100001
2 00000010 34 00100010
3 00000011 e
4 00000100 62 00111110
5 00000101 63 00111111
6 00000110 64 01000000
7 00000111 65 01000001
8 00001000 66 01000010
9 00001001 oo
10 00001010 126 01111110
11 00001011 127 01111111
12 00001100 128 10000000
13 00001101 129 10000001
14 00001110 130 10000010
15 00001111 cee
16 00010000 252 11111100
17 00010001 253 11111101
ces 254 11111110
31 00011111 255 11111111

5.2. Signed Binary Numbers

Signed binary number representations are used to represent both positive and negative
numbers. They also allow signed binary addition and subtraction operations, which may
yield negative results.

Copyright 00 2000 R.M. Laurie Page 59

Chapter 5 Number Systems And Codes

To utilize the same full adder circuit for both signed and unsigned binary numbers the
2's complement dataformat is utilized to represent signed binary numbers. When referring to
signed binary numbers, the 2's complement representation will always be used in thistext.

An abbreviated table of 8-bit 2's complement numbersis shown in Figure 5.3. For
positive numbers within the range of 127,, through 0,4, the 2's complement representation is
identical to the unsigned binary format.

However, for negative numbers a conversion procedure is required. Conversion is
performed for 2's complement negative numbers using the following three steps:

Step 1) Determine the unsigned binary number magnitude

Step 2) Complement (invert) the state of each bit
Step 3) Add 1 to the result

Figure 5.3 Some Signed Binary to Decimal Conversions

+ Two's complement code - Two's complement code
+ 127 011iiinl - 128 10000000
+ 126 01111110 - 127 10000001
+ 125 01111101 - 126 10000010

- 125 10000011
+ 65 01000001 - 65 10111111
+ 64 01000000 - 64 11000000
+ 63 00111111 - 63 11000001
+ 33 00100001 - 33 11011111
+ 32 00100000 - 32 11100000
+ 31 00011111 - 31 11100001
+ 17 00010001 - 17 11101111
+ 16 00010000 - 16 11110000
+ 15 00001111 - 15 11110001
+ 14 00001110 - 14 11110010
+ 13 00001101 - 13 11110011
+ 12 00001100 - 12 11110100
+ 11 00001011 - 11 11110101
+ 10 00001010 - 10 11110110
+ 9 00001001 - 9 11110111
+ 8 00001000 - 8 11111000
+ 7 00000111 - 7 11111001
+ 6 00000110 - 6 11111010
+ 5 00000101 - 5 11111011
+ 4 00000100 - 4 11111100
+ 3 00000011 - 3 11111101
+ 2 00000010 - 2 11111110
+ 1 00000001 - 1 11111111
+ 0 00000000

Page 60 Copyright 00 2000 R.M. Laurie

Chapter 5 Number Systems And Codes

Example 5.2 illustrates this 2's complement conversion procedure using four examples.
This procedure is only used for converting negative numbers to 2's complement form. Again,
positive numbers will have the same form for both unsigned binary and 2's complement
representations.

This same three-step procedure can aso be used to change the sign of the number. This
is useful when converting a negative 2's complement number to decimal and for the
subtraction operation. Subtraction can be performed on 2's complement numbers by first
performing the three-step 2's complement procedure described to change the sign of the
subtrahend; Then, add the two numbers together. By using this procedure to perform
subtraction, no additional subtraction hardwareis required to perform the subtraction
operation on two 2's complement numbers.

Therange of 8-bit 2's complement numbersis+127 to -128 inclusive, as shown in
Figure 5.3. The most significant bit isthe sign bit. If b; = 0, the number is positive, and if b,
= 1 the number is negative. Note that only one value exists for zero in 2's complement
numbers, and zero is considered a positive number. Therefore, the highest value of positive
numbersis 127 instead of 128 as one might expect.

Example 5.2: The 2's Complement Representation
Convert the following decimal Numbers:

-5 =65 -126l +63

10 10 0 10
Step 1) Determine the unsigned binary number which represents the magnitude;
0000,0101 0100,0001 0111,1110 Positive
Number
Step 2) Complement (invert) the state of each bit;
1111,1010 1011,1110 1000, 0001 j
Step 3) Add 1 to the result.

1111,1011 1011,1111 1000,0010 0011,1111

5.3. Binary Addition

Binary addition can be easily performed by hand just as decimal addition. First, line up
the bitsin columns as shown in Example 5.3. Then add up the bits of each column. When the
sum for each bit exceeds 1, acarry is generated into the next significant bit. The carry out of
the most significant bit representsthe carry flag. If this carry flag isin the 1 state and the
numbers are unsigned binary, then the sum exceeds what can be shown with 8 bits. When a
carry out exists from bit 6 with no carry out from bit 7, or vice versa, an improper sign
change has occurred for the sumin 2's complement form and an overflow condition exists.
When this overflow condition is true the resulting 2's complement sum isinvalid.

Addition is performed using the same method for both unsigned and signed 2's
complement numbers. The only differences are the conditions dictating the validity of the
sums. Therefore, it is up to the computer programmer to keep track of whether the dataisin
signed or unsigned formats and to check the appropriate carry or overflow conditionsto
determineif the sums are valid.

Copyright 00 2000 R.M. Laurie Page 61

Chapter 5 Number Systems And Codes

Binary addition of both unsigned and 2's complement signed numbers can be performed
using the full adder hardware of Figure 5.4. Thisfigureis similar to Figure 2.18 with the
exception that eight full adder circuits are cascaded together so that addition can be
performed on 8-bit data and both a Carry flag (C) and Overflow flag (V) are available for
examination. The C and V flags are often referred to as the carry and overflow condition
codesin computer literature.

The carry flag is actually the carry out from the full adder of the most significant bit.
The carry flag is considered only when performing unsigned binary addition. When the carry
flagisa‘0 it specifiesthat the resulting unsigned binary sum iswithin the range of valid
binary numbers O through 255. A carry flag of one specifies that the resulting sum is greater
than 255 and the result is not valid. The overflow flag is meaningless when performing
unsigned binary addition.

Addition of signed 2's complement numbersis also performed using the circuitry of
Figure 5.4. When performing 2's complement arithmetic the carry flag is meaningless and
only the overflow flag specifies whether the resulting sum is within the valid range from -
128 through +127. The overflow flag is generated by exclusive-OR'ing the carry out from bit
7 with the carry out of bit 6. If one, but not both, of these carry outsarea*1’ it meansthat an
improper sign change has occurred and the resulting sum is not valid. Therefore, if the
overflow flag is 0, the 2's complement sum is valid; An overflow flag of 1 signifiesthat the
sumisout of range (-128 through +127).

Example 5.3: Binary Addition

Unsigned |Signed Unsigned |Signed
Carry Carry 11
A = 0001,0010 18 +18 A = 0100,0011 67 +67
B = 0000,0101 5 +5 B = 1000,0011 131 -125
Sum = 0001,0111 23 +23 Sum = 1100,0110 198 -58
Valid Valid Valid Valid
c=0 V=0 Cc=0 V=0
Unsigned |[Signed Unsigned |Signed
Carry 1111 1 1 Carry 11111 111
A = 0Ol11,1101 125 +125 A = 0000,0111 7 +7
B = 0010,0101 37 +37 B = 1111,1101 253 -3
Sum = 1010,0010 162 +162 Sum = 0000,0100 260 +4
Valid 4127 >255 Valid
Cc=0 v=1 c=1 V=0

Page 62 Copyright 00 2000 R.M. Laurie

Chapter 5 Number Systems And Codes

Figure 5.4 8-Bit Adder Circuit With Overflow and Carry Flags

For Unsigned Binary tcarry 0ut7
A7 [Pull
_ J 0 = Sum Valid — s
€= { 1 = Sum Exceeds 8 Bits B,——| Adder by
Carry In7)
V = Meaningless
' Carry Out
6
A ——
For Signed Binary 6 Full | Sum
ok SR B6——> Adder 6
C = Meaningless Carry Ing
Carry Out5
_ 0 = Sum Valid A ——y
Ve 1 = Sum Out of Range 5 Full | Sum
& BS—-) Adder : 5
TCarry In5
TCarry Outo
Ao Full Sum
By— Adder i 0

lCarry In0

s
nm

5.4. Binary Number Magnitude

The number of bits used for the data word restricts the magnitude of decimal numbers
that can be represented by binary numbers. Binary numbers with eight bits can represent
unsigned numbersin the range from 255 through 0, or signed numbersin the range from
+127 through -128. Numbers outside of these ranges cannot be represented unless additional
bits are used to increase the data word size.

Binary numbers can represent a maximum of 2" decimal numbers, where n is the
number of bits of the dataword. For unsigned numbers the range begins at zero. For signed
binary numbers the center of the range is zero.

Consider the case when the data word size is increased from one byte to two bytes (16
bits). A two-byte binary number can be used to represent 65,536 different decimal numbers.
For unsigned binary numbers, 16 bits would represent decimal numbers in the range of
65,535 to 0. The signed 2's complement range is from +32,767 to -32,768. Once again, zero
is considered a positive number. Therefore, the range of negative numbers appears to be one
more than positive numbers.

Computers have a standard word size in which al datais represented as some multiple
of eight bits (i.e. 8, 16, 32, 64).

Copyright 00 2000 R.M. Laurie Page 63

Chapter 5 Number Systems And Codes

5.5. Binary Coded Decimal Representation

People prefer to work with decimal numbers for both data entry and display
applications. A direct binary representation of decimal numbersis preferable to the
conversion methods of Section 5.1. A binary data format used for direct representation of
decimal digitsis called binary coded decimal, usually abbreviated BCD. The standard format
used to represent BCD numbersis shown in Figure 5.5. This BCD format uses a group of
four bits to represent one decimal digit. The four bits are weighted such that each bit
corresponds to the values 2°, 22, 2, 2° or 8, 4, 2, 1. Only binary numbers 0000 through 1001
arevalid BCD codes. Any four bits with avalue greater than 1001 are considered invalid.
Therefore, only ten out of the sixteen possible combinations of four bits are considered valid
BCD codes. Since each decimal digit is encoded into four bits, two decimal digits can be
represented in one byte. Thisis called often called packed BCD and will be the standard
format used to represent BCD numbers in thistext.

Although BCD formats are good for human interfaces they are very inefficient for data
storage and processing. A two-byte BCD format can only represent decimal numbersin the
range 9999 to 0. A two byte unsigned binary format will represent numbers in the range
65,535 to 0. The adder circuit of Figure 5.4 will not give direct results when adding BCD
formatted numbers. Additional logic circuits are required to perform BCD addition.

The Grey Code of Figure 5.5 is an example of a non-weighted binary format used to
represent decimal numbers. Grey code is often used for sensors with digital outputs, such as
shaft encoders. A binary code exists for each decimal digit; however, the bits do not
represent powers of two. A direct conversion algorithm does not exist for Grey code as with
the standard BCD data. Therefore, alook-up table, such asthe onein Figure 5.5, must be
used.

Figure 5.5 Binary Coded Decimal Codes

Decimal Standard BCD Grey Code
0 0000 0000
1 0001 0001
2 0010 0011
3 0011 0010
4 0100 0110
5 0101 0111
6 0110 0101
7 0111 0100
8 1000 1100
9 1001 1000

Page 64 Copyright 00 2000 R.M. Laurie

Chapter 5 Number Systems And Codes

5.6. Floating Point Representations

Signed integer numbers are represented using the 2's complement format of Section 5.2.
Integer numbers are whole numbers. An aternate approach is required to represent real
numbers.

The floating-point representation is used to represent real numbers in much the same
way as scientific notation. Consider the number -0.0004772, which can be represented in
scientific notation as -0.4772 x 10°%. The mantissais normalized to be a number between
+0.9999 and £0.1000. The exponent -3 is a signed integer quantity representing the power of
ten that the mantissais multiplied. The actual bit format used to represent floating point
numbers varies dependent on the data word size of the computer.

Figure 5.6 shows atypical 32-bit format used to represent floating point numbers. For
exampl e both the mantissa and exponent can be represented using 2’ s complement numbers.
In both cases a sign bit of O represents a positive number and asign bit of 1 represents a
negative number. The number of bitsin the exponent determines the range of powers of ten.
An 8 bit exponent can represent powers of ten from 10" to 10'%. A 24-bit mantissa can
represent signed decimal numbers of six significant digits for the range +999,999 to
1999,999.

If more significant digits are required for an application, allocating more bitsto the
mantissa can increase the mantissa size. Most computer programming languages alow a
higher precision (more significant digits) floating point number representation that is often
called double precision floating point numbers.

Figure 5.6 Floating Point Number Representation
31 30 24 23 22 0

i
S Exponent S Mantissa
] |

5.7. Hexadecimal Numbers

Representing eight bits of dataas astring of 1's and 0's can be tedious.

The hexadecimal number system is used to smplify data representation by encoding 4
bits as one symbol. Hexadecimal numbers comprise the base 16 number system. The
hexadecimal number system has sixteen different symbols, which represent the value of each
hexadecimal digit. As shown in the conversion table of Figure 5.7a, 0 through 9 are used to
represent the first ten hexadecimal symbols, and letters A through F are used to represent the
last six symbols. Each hexadecimal symbol represents one of the sixteen possible
combinations of four bits. Therefore, eight bits of datais more easily represented as two
hexadecimal digits.

5.7.1. Binary to Hexadecimal Conversion

To convert a binary number to hexadecimal is quite easy. Starting from the least
significant bit (by), group the binary bitsinto groups of four. Use the table of Figure 5.7ato
determine the hexadecimal symbol that represents each group of four bits.

For example:

1000,1100,0111,1010, =

8 C 7 A

Copyright 00 2000 R.M. Laurie Page 65

Chapter 5 Number Systems And Codes

Figure 5.7 Hexadecimal Numbers

a) b)
Base Base Base Base 16 can represent 4 bits
16 2 10
16 Symbols: 0,1,2,3,4,5,6,7,
0 0000 0 8,9,A,B,C,D,E,F
1 0001 1
2 0010 2
3 0011 3 A 5 2 F16
[; 818(1) g Most Significant Least Significant
Digit (MSD) Digit (LSD)
6 0110 6
7 0111 7 Powers of 16
8 1000 8 MSD I I LSD
9 1001 9 163 162 161 160
A | 1010} 10 4096 256 16 1
B 1011 11
¢ | 1100 | 12 (A=) 10 x 4096 = 40,960
D 1101 13 _ _
(5=) 5 x 256 = 1,280
E 1110 14 _ -
F 1111 15 (22) 2x 16 = 32
(F=) 15 x 1= 15
42,28710

5.7.2. Hexadecimal to Binary Conversion

Converting from hexadecimal to binary is also quite smple. Use the table of Figure

5.7ato determine the group of four bits, which represents each digit of the hexadecimal
number.

For example:
A 5 2 F16 =
1010,0101,0010,1111,

5.7.3. Hexadecimal to Decimal Conversion

An example of hexadecimal to decimal conversion is shown in Figure 5.7b, for
hexadecimal number A52F. To convert any hexadecimal number to decimal, determine the
powers of sixteen representing each digit and multiply the number in each digit by the power
of sixteen associated with that digit. Then add up the products of each digit to determine the
equivalent decimal number.

Conversion of afour digit hexadecimal number, hs h, hy hg, to decimal is represented by
the following equation:

hs16° + h,167 + h,16" + hy16° = hs (4096) + h, (256) + h; (16) + ho (1)

5.7.4. Decimal to Hexadecimal Conversion

To convert from a decimal number to a hexadecimal number is more difficult.

One method is similar to the decimal to binary conversion procedure discussed in
Example 2.1. The procedure for converting from a decimal number to a hexadecimal number
is shown in Example 5.5. Consider the decimal number 42,287. Conversion is performed

Page 66 Copyright 00 2000 R.M. Laurie

Chapter 5 Number Systems And Codes

using successive divisions by 16. First divide 42,287 by 16 which will generate a quotient of
2642 and remainder of 15.

Next divide the preceding quotient 2642 by 16, which will generate the next quotient of
165 and remainder of 2. Continue the division by 16 until a quotient of 0 exists. The
hexadecimal equivalent is determined by examining the remainder column and taking the
final remainder as the most significant hexadecimal digit and the first remainder asthe least
significant digit.

Remaindersin the range of 10 to 15 would of have to be converted to their hexadecimal
symbols described in the table of Figure 5.7a. Therefore, 42,287 decimal is equivalent to the
hexadecimal number A52F.

Example 5.5: Convert 42,287 Decimal to Hexadecimal

Quotient Remainder
42,287 + 16 = 2642 15 = P & LSD = Least Significant Digit
2,642 =+ 16 = 165 2 =2
165 + 16 = 10 5 =5
10 + 16 = 0 10 = A &—MSD = Most Significan Digit
&2,28710 = A52F16

5.7.5. Hexadecimal Addition

Hexadecimal addition is similar to decimal addition except digits are incremented up to
F (15,0) before generating a carry into the next significant digit. Thisis demonstrated with
the following examples:

5A 52 29
16 16 16

+ 36 + AC + 28
16 16 16

90 FE 51
16 16 16

5.8. Alphanumeric Data Representation

Peopl e use written language to communi cate among themselves and to give instructions
to a computer in the form user keyboard input. Alphanumeric datais represented by a binary
code for each letter, number, and symbol commonly associated with atypewriter keyboard.
The ASCII (American Standard Code for Information Interchange) Code is the most
commonly used representation for al phanumeric data. Figure 5.8 presents atable used to
convert from either hexadecimal or binary codes to the ASCII characters represented by
these codes. All upper and lower case |etters, numbers, and symbols used in the English
language are in column 2 through 7. Special computer control characters are found in
columns 0 and 1. A definition of each of these control charactersislocated below the
conversion table.

An ASCII character isrepresented by a byte, with bit 7 (MSB) being the parity bit and
bits 6 through O determined by the conversion table. The parity bit is used for error detection
when transmitting and receiving data. Both the transmitter and receiver must be setup to
transfer data with the same parity. The parity bit value is determined by the type of parity

Copyright 00 2000 R.M. Laurie Page 67

Chapter 5 Number Systems And Codes

selected and the state of bits 6 through 0. Four types of parity exist as described in the table
below. However, in most applications the parity bit issimply setto ‘0.

0 Parity Bit 7setto 0 (Default)

1 Parity Bit 7settol

Even Parity Bit 7 set to generate an even number of 1'sfor the byte
Odd Parity Bit 7 set to generate an odd number of 1'sfor the byte

5.8.1. Binary String to ASCII Character Conversion

Given a string of binary bits or hexadecimal numbers, conversion to the ASCII
charactersis performed by separating the string into individual bytes. Again, it is assumed
that the parity bit isequal to 0.

To convert bits 6 through 0 to ASCI|I, use the ASCII conversion table of Figure 5.8. The
least significant nibble, bits 3 through O, represents the rows of the conversion table. Entries
arelisted in both binary bits and hexadecimal digits. Bits 6 through 4 represent the columns
of the table. Once the specific column and row are located, the ASCI| character defined by
the byteisfound at the specified row and column. Continue this conversion process for each
byte of the string. This procedureisillustrated in the example below.

As an example, convert the following hexadecimal representation of abinary string
with ‘0’ parity to ASCII characters.

Hexadecimal Representation = 576861743F
57 68 61 74 3F
0101,0111 0110,1000 0110,0001 0111,0100 0011,1111
Convert using ASCII Conversion Table gives you the following answer:
w h a t ?
= What?

5.8.2. ASCII Character to Binary String Conversion

The conversion of astring of charactersto a string of bits or hexadecimal digitsis performed
using the reverse process of the above. Find the ASCII character in the ASCII Conversion
table. Determine the byte representing this ASCII character by first determining the row of
the character in the table. This specifiesthe least significant nibble, bits 3 through 0. Then
determine the column of the character, which specifies bits 6 through 4. Bit 7 is the parity bit
and assumed to be 0. Once al eight bits of the ASCII character byte are determined, they can
be converted to hexadecimal, if desired. This procedure isillustrated below.

ASCII Character String = What?

W h a t ?
Conversion 101,0111 110,1000 110,0001 111,0100 011,1111
Parity Added 0101,0111 0110,1000 0110,0001 0111,0100 0011,1111

Hexadecimal 57 68 61 74 3F

Page 68 Copyright 00 2000 R.M. Laurie

Chapter 5 Number Systems And Codes

Figure 5.8 ASCII Conversion Table

HEX MSD 0 1 2 3 4 5 6 7
LSD | BINARY 000 001 010 011 100 101 110 111
0 0000 NUL DLE SPACE 0 @ P ‘ p
1 0001 SOH DC1 ! 1 A Q a q
2 0010 STX DC2 " 2 B R b r
3 0011 ETX DC3 # 3 C S c s
4 0100 EOT DC4 $ 4 D T d t
5 0101 ENQ NAK % 5 E U e u
6 0110 ACK SYN & 6 F \% f v
7 0111 BEL ETB ' 7 G W g w
8 1000 BS CAN (8 H X h X
9 1001 HT EM) 9 | Y i y
A 1010 LF SUB * J Y4] z
B 1011 VT ESC + : K [k {
C 1100 FF FS , < L \ | |
D 1101 CR GS - = M] m }
E 1110 SO RS . > N n n ~
F 1111 Sl us / ? @) _ o] DEL
Control Characters:

NUL Null VT Vertical SYN Svnchronous Idle

SOH Start of Heading FF Form Feed ETB End Transmission Block

STX Start of Text CR Carriage Return | CAN Cancel

ETX End of Text SO Shift Out EM End of Medium

EOT End of Transmission | Sl Shift In SUB Substitute

ENQ Enquiry DLE Datalink ESC Escape

ACK Acknowledge DC1 Device Control FS File Separator

BEL Bdll DC2 Device Control GS Group Separator

BS Backspace DC3 Device Control RS Record Separator

HT Horizontal DC4 Device Control us Unit Separator

LF Line Feed NAK Negative DEL Delete

Copyright 00 2000 R.M. Laurie Page 69

Chapter 5 Number Systems And Codes

Problem Set

1.

Perform the following decimal to binary conversions. Verify your answers by
performing binary to decimal conversions.

a) 25 b) 31 c) 173 d) 250

e) 320 f) -19 g) -102 h) -185

Perform the following binary additions on one byte numbers. Determine the state of

the carry flag [C] and the overflow flag [V] after the addition operation.

a) 0010,0110 b) 0110,0010 <c) 1010,0111 d) 1010,1010
+0001, 1011 +0101, 0001 +0110, 0011 +1100, 0011

Determine the decimal equivalents for the numbers of problem 2 for both binary
signed and unsigned number representations. Verify that the resulting sumis
correct by also determining the decimal equivalents.

When performing binary addition what is the significance of the overflow flag and
carry flags?

Convert the following decimal humbers to both 8421 BCD and Grey Code BCD
formats. Verify your answers by performing the reverse conversion. Assume four
bits represent one decimal digit.

Q25 h)8s3)94 d)122

Convert the following hexadecimal numbersto binary. Verify your answers by
converting the binary result back to hexadecimal.

887 b)23 ¢) CF d)738

Convert the hexadecimal numbers of Problem 8 to decimal. Verify your answers by
converting the decimal result back to binary.

Write the hexadecimal string for the following ASCII character strings. Assume the
parity bitis‘0'.
a) What If?
b) PO Box 135
¢) Houghton, M1
d) 49931

Convert the following hexadecimal stringto ASCII characters.
4545 33 30 36 2049 73 20 46 75 6E 21

Page 70 Copyright 00 2000 R.M. Laurie

Problem Set Solutions for Select Problems

Problem Set Solutions for Select Problems

Chapter 2 Problem Solutions

2a) A B] AB

— 00
A)AB o1

10
B 11

>
&
§
o)

2e)

- O OO0

O Ok OO
= OO OFR O

> 5

Nt

LS

w

»>

+

w

oo >

b

;@

=

®

a
s s = OO OO
OO KOO

o
%B
ey
3|
O O
— O QO
(oMol el

3a) 3¢)
A 8
C
Ya) OA =0 Ye)(A+B) +C = A4(Brc)
3 f o A B A+8l0r8) .0 | BrcArrre)
0 [e) 0] O
1o g 82(:” 0 4 l /
Answe — (SN & ,) I] [}
_ G !
d4e) AA=A Yool T Pots *Ir“
Al Al AA 1O l | |
olo| o D | ! | |
t—E Ve {fies
SV
5. (A+8)(A+C)
= A4 4 4C +AB + BC E<jpmmd Ont (Disteil OK)
= A4+ ACc + AB + BC Id&v—yofe—n‘ AND Law
= /A 4 AC .‘LAG + @C Id&'ﬂ/{?{/ AND Ld-"‘/
= 4(l+c)+AB + BC Disteiowrve OR Law
= A(1)+ AB +6EC Null OR Law
= A(1+8) + B¢ Distiontive O Law
= A (1) +8C Mall O La
= A + BC Lde~tity, AND Law
T here fore A+Bc = (A+8BY(A+C)

Copyright 00 2000 R.M. Laurie Page 71

Problem Set Solutions for Select Problems

Chapter 2 Problem Solutions

55) (4 LBFC)A .
= 44 + B+c A Distributive OR Law
= O+ 83¢hA Inverse AND Law
= A B+c Commutarive AND Law
= 3 BC D- Morgon OK Law
= I7EiC De Mucgpri OR Law

S A 4+ B(B+C) DeMogo-5 AND Lan
=4 4 BB+ Donble Imversion
= AT + R /}bso')aff%ﬂ AND Lan

POS = (arB+) (ArarT) (A+BC) (A+B+ C) (AR +C)

7POS) B

A
=
= L/
T J— -
e/ > %owpuT
; -
B
C
&
g
[
———— —n :
° Xx'AB D O 0, D
11d) — ©o'oco|0 O O O
=10 O olg 1|oo o o
b
) — Y o1 .0/00 0 O
% e— oly |0 o © 0
—— o 1\00:\00 0
| 3 l tg1tlo 1 © Q
| 'l ojo o0 1 O
jl I'llloOO ‘
A B

Page 72 Copyright 00 2000 R.M. Laurie

Problem Set Solutions for Select Problems

Chapter 3 Problem Solutions
ad) Control Qantrol A 3 oUT
! 6 O O | Disc
A o) o I h
B our (o]] O "
o I l H
| o 0 o
| o | l
l e l
Condrol I | 1 |
Chapter 4 Problem Solutions
2a&c)
(a) M
Output] . l
¢ 0 = = —t——
(c) 1
Output
¢ gt]
6) l J O.ﬂm:f’
JQ J Q‘h o ‘ b 7 & b——e
:yJPU"'; C C c *
1— & 2 k——-kérj p x Q |k
R€55‘r j LW Cpar ?c:su/\

Since the clocks are not all connected together in this circuit it
is an asynchronous circuit

Copyright 00 2000 R.M. Laurie Page 73

Problem Set Solutions for Select Problems

Chapter 5 Problem Solutions

1&) 25=0001,1001 1c) 173=1010,11011 e) 320=1,0100,0000 < Exceeds 8 bits

1102 - 01190170
/001, 1001

/ = -
001, 1000, 0z,

24) [j)}«\/ -0

[Djo | | .I / ‘ /U""'i’“"/{l 5/—5w»€¢(
Opro, 0110 35 + 3%
L 000,101 P +27

C=0 V=0
2c) FRD-v=o
m/) I V"qu..@/(5,'41,‘:/ { 2% [0»\).1 > S oy
1010, o1/} -89 10/0 011
+0110, 00171 0/4/7/000
0/0/1/00/

6 a) 87,5 =1000,0111, 10c) CF=1100,1111,
7 a) 8716 =135]_o b) 2316 =3510 C) CF16=20710

8 a) What If? = 57 68 61 74 20 49 66 3F

Page 74 Copyright 00 2000 R.M. Laurie

	Introduction
	Digital Logic States
	Modularity

	Combinational Logic
	Logic Gates
	Boolean Algebra
	Boolean Equivalence Verification
	Truth Table Verification
	Boolean Algebra Verification

	Combinational Network Design
	Description to Digital Circuit Design
	Sum of Products (SOP) Method
	Product Of Sums (POS) Method
	Induction Method

	Digital Circuit Minimization
	Boolean Expressions from Digital Circuit

	Common Combinational Circuits
	Decoders
	Multiplexers
	Binary Adders
	Arithmetic Logic Units

	Integrated Circuits
	Dual In-Line Packages
	Surface Mount Packages
	Integrated Circuit Technologies
	Device Outputs
	Tri-state Gates
	Open-Collector Gates
	Drivers

	Sequential Logic
	Sequential Logic Devices
	J-K Flip-Flop
	T Flip-Flop
	D Flip-Flop and Latch
	Preset And Clear Inputs

	Timing Diagram Construction For Sequential Circuits
	Sequential Circuits
	Frequency Dividers and Counters
	Data Registers
	Shift Registers
	Data Converters
	Serial to Parallel Data Converter
	Parallel to Serial Data Converter

	Sequential Integrated Circuits

	Number Systems And Codes
	Unsigned Binary Numbers
	Binary to Decimal Conversion
	Decimal to Binary Conversion

	Signed Binary Numbers
	Binary Addition
	Binary Number Magnitude
	Binary Coded Decimal Representation
	Floating Point Representations
	Hexadecimal Numbers
	Binary to Hexadecimal Conversion
	Hexadecimal to Binary Conversion
	Hexadecimal to Decimal Conversion
	Decimal to Hexadecimal Conversion
	Hexadecimal Addition

	Alphanumeric Data Representation
	Binary String to ASCII Character Conversion
	ASCII Character to Binary String Conversion

