
1

Chapter 11: Inheritance and Polymorphism

1

Chapter 11 Inheritance and Polymorphism

Suppose you will define classes to model circles, r ectangles, and
triangles. These classes have many common features.
The best way to design these classes so to avoid redundancy
(duplicate code) is to use inheritance.

�Inheritance
�Software reusability
�Create new class from existing class

�Utilizes existing class’s data and behaviors
�Extends class with additional properties and method s

�Subclass extends superclass
�Subclass

More specialized group of objects
Methods inherited from superclass

Can create additional methods in subclass
Can overwrite superclass methods in subclass

Properties inherited from superclass
Can create additional properties in subclass

2

UML Superclasses and Subclasses

GeometricObject
-color: String

-filled: boolean

-dateCreated: java.util.Date

+GeometricObject()

+GeometricObject(color: String,
filled: boolean)

+getColor(): String

+setColor(color: String): void

+isFilled(): boolean

+setFilled(filled: boolean): void

+getDateCreated(): java.util.Date

+toString(): String

The color of the object (default: white).

Indicates whether the object is filled with a color (default: false).

The date when the object was created.

Creates a GeometricObject.

Creates a GeometricObject with the specified color and filled
values.

Returns the color.

Sets a new color.

Returns the filled property.

Sets a new filled property.

Returns the dateCreated.

Returns a string representation of this object.

Circle
-radius: double

+Circle()

+Circle(radius: double)

+Circle(radius: double, color: String,
filled: boolean)

+getRadius(): double

+setRadius(radius: double): void

+getArea(): double

+getPerimeter(): double

+getDiameter(): double

+printCircle(): void

Rectangle
-width: double

-height: double

+Rectangle()

+Rectangle(width: double, height: double)

+Rectangle(width: double, height: double
color: String, filled: boolean)

+getWidth(): double

+setWidth(width: double): void

+getHeight(): double

+setHeight(height: double): void

+getArea(): double

+getPerimeter(): double

GeometricObject1
public class GeometricObject1 {

Circle4
public class Circle4

extends GeometricObject1 {

Rectangle1
public class Rectangle1

extends GeometricObject1 {

Use arrows to indicate
class extension from
Subclass to Superclass

2

Chapter 11: Inheritance and Polymorphism

3

Abstraction, Inheritance, Composition

�Abstraction
�Focus on commonalities among objects in system

�“is-a” vs. “has-a”
� “is-a”

� Inheritance
� subclass object treated as superclass object
�Example: Car is a vehicle

Vehicle properties/behaviors also car properties/beh aviors
�Dog is a animal

Animal properties/behaviors also dog properties/beh aviors

� “has-a”
�Composition
�Object contains one or more objects of other classe s as

members
�Example: Car has a steering wheel
�Example: Kitchen has a refrigerator

4

Subclass Inherits from Superclass
� Direct superclass

� Inherited explicitly (one level up hierarchy)
� Indirect superclass

� Inherited two or more levels up hierarchy
� Single inheritance

� Inherits from one superclass
� Multiple inheritance

� Java does not support multiple inheritance

Shape

TwoDimensionalShape ThreeDimensionalShape

Circle Square Triangle Sphere Cube Tetrahedron

3

Chapter 11: Inheritance and Polymorphism

5

Examples of Subclass and Superclass

� Inheritance can be verified with "is-a" test
1. Guitar extends (is-a) Instrument?
2. Person extends (is-a) employee?
3. Dog extends (is-a) animal?
4. Metal extends (is-a) Aluminum?
5. Oven extends Kitchen?
6. Ferrari extends engine?
7. Blond extends smart?
8. Coke extends Beverage?

Yes

Rev.

Yes

Rev.

Cmp.

Cmp.

No

Yes

6

The keyword super

�super refers to the superclass of the class
(subclass) in which super appears

�super can be used in two ways:
�To call a superclass constructor
�To call a superclass method

�Caution:You must use the keyword super to
call the superclass constructor
� Invoking a superclass constructor’s name in a

subclass causes a syntax error
� Java requires that the statement that uses the

keyword super appear first in the constructor

4

Chapter 11: Inheritance and Polymorphism

7

Instantiating Subclass Object
� Unlike properties and methods, a superclass's

constructors are not inherited in the subclass they are
automatically invoked

� Subclass constructor invokes Superclass constructor
� Explicitly invoked from the subclasses' constructor s, using

the keyword super
� Implicitly invoked if the keyword super is not explicitly used,

the superclass's no-arg constructor is automatically invoked
� If class does not have a no-arg constructor it resul ts in error

� Chain of constructor calls follows inheritance hier archy
� However, since constructor Last constructor called in chain is
Object’s constructor

� Original subclass constructor’s body finishes execu ting last
� Example: Person :: Employee :: Faculty hierarchy

Constructor Invocation: Faculty � Employee � Person
Constructor executes last to first constructor in i nheritance chain
Constructor code execution: Person � Employee � Faculty

8

Constructor Chaining
Constructing an instance invokes all the superclasses’ constructors along the inheritance chain

1. Start from the main method

2. Invoke Faculty constructor

3. Invoke Employee’s no-arg constructor

4. Invoke Employee(String) constructor

5. Invoke Person() constructor

6. Execute println

7. Execute println

8. Execute println

9. Execute println

public class Faculty extends Employee {

public static void main(String[] args) {

new Faculty();

}

public Faculty() {

System.out.println("(4) Faculty's no-arg constructor is invoked");

}

}

class Employee extends Person {

public Employee() {

this("(2) Invoke Employee’s overloaded constructor");

System.out.println("(3) Employee's no-arg constructor is invoked");

}

public Employee(String s) {

System.out.println(s);

}

}

class Person {

public Person() {

System.out.println("(1) Person's no-arg constructor is invoked");

}

}

5

Chapter 11: Inheritance and Polymorphism

9

Superclass without no-arg Constructor

public class Apple extends Fruit {

}

class Fruit {

public Fruit(String name) {

System.out.println("Fruit's constructor is invoked");

}

}

What is the program error:

10

Overriding Methods in the Superclass

� A subclass inherits methods from a superclass
� A subclass extends properties and methods from the

superclass
� You can also:

� Add new properties
� Add new methods

� Sometimes it is necessary for the subclass to modif y the
implementation of a method defined in the superclas s which is
referred to as method overriding

public void printCircle() {

System.out.println("The circle is created " +

super.getDateCreated() + " and the radius is " + radius);

}

public class Circle extends GeometricObject {

/** Override the toString method defined in GeometricObject */
public String toString() {
return super.toString() + "\nradius is " + radius;

}

}

6

Chapter 11: Inheritance and Polymorphism

11

Overriding Instance Methods and

hiding static methods in the Superclass

An instance method can be overridden only if it
is accessible. Thus a private method cannot be
overridden, because it is not accessible outside
its own class. If a method defined in a subclass
is private in its superclass, the two methods are
completely unrelated.

Like an instance method, a static method can be
inherited. However, a static method cannot be
overridden. If a static method defined in the
superclass is redefined in a subclass, the
method defined in the superclass is hidden.

12

Overriding vs. Overloading

public class Test {

public static void main(String[] args) {

A a = new A();

a.p(10);

a.p(10.0);

}

}

class B {

public void p(double i) {

System.out.println(i * 2);

}

}

class A extends B {

// This method overrides the method in B

public void p(double i) {

System.out.println(i);

}

}

public class Test {

public static void main(String[] args) {

A a = new A();

a.p(10);

a.p(10.0);

}

}

class B {

public void p(double i) {

System.out.println(i * 2);

}

}

class A extends B {

// This method overloads the method in B

public void p(int i) {

System.out.println(i);

}

}10.0
10.0

10
20.0

Overriding Overloading

7

Chapter 11: Inheritance and Polymorphism

13

Polymorphism

� An object of a subtype (subclass) can be used where ver its
supertype (superclass) value is required
� Subtypes and Supertypes refer to class inheritance
� Variable of a supertype can refer to a subtype object
� Polymorphism allows code to run that works for class and any of its

subclasses. Cool!

1. public class PolymorphismDemo {

2. /** Main method */

3. public static void main(String[] args)

4. {

5. // Display circle and rectangle properties

6. displayObject(new Circle4(1, "red", false));

7. displayObject(new Rectangle1(1, 1, "black", true));

8. }

9. /** Display geometric object properties */

10. public static void displayObject(GeometricObject1 object)

11. {

12. System.out.println("Created on " + object.getDateCreated() +

13. ". Color is " + object.getColor());

14. }

15. }
Created on Tue Jun 12 00:07:28 JST 2012. Color is red

Created on Tue Jun 12 00:07:28 JST 2012. Color is black

14

public class DynamicBindingDemo {
public static void main(String[] args) {

m(new GraduateStudent());
m(new Student());
m(new Person());
m(new Object());

}

public static void m(Object x) {
System.out.println(x.toString());

}
}

class GraduateStudent extends Student {
}

class Student extends Person {
public String toString() {

return "Student";
}

}

class Person extends Object {
public String toString() {

return "Person";
}

}

Polymorphism and Dynamic Binding

Method m takes a parameter of the
Object type. You can invoke it with
any object.

An object of a subtype can be used
wherever its supertype value is required.
This feature is known as polymorphism.

When method m(Object x) is executed, the
argument x ’s toString method is invoked.
x may be an instance of GraduateStudent ,
Student , Person , or Object .
Classes GraduateStudent , Student , Person ,
and Object have their own implementation of
the toString method.
Which implementation is used will be
determined dynamically by the Java Virtual
Machine at runtime.
This capability is known as dynamic binding.

Student
Student
Person
java.lang.Object@7d8a992f

8

Chapter 11: Inheritance and Polymorphism

15

Generic Programming

�Polymorphism
� Allows methods to be used

generically for a wide range of
object arguments.

� Is Generic Programming
� If a method ’s parameter type is

a superclass (e.g., Object), you
may pass an object to this
method of any of the
parameter ’s subclasses (e.g.,
Student or String).

� When an object (e.g., a Student
object or a String object) is
used in the method, the
particular implementation of
the method of the object that is
invoked (e.g., toString) is
determined dynamically.

public class DynamicBindingDemo {
public static void main(String[] args) {

m(new GraduateStudent());
m(new Student());
m(new Person());
m(new Object());

}

public static void m(Object x) {
System.out.println(x.toString());

}
}

class GraduateStudent extends Student {
}

class Student extends Person {
public String toString() {

return "Student";
}

}

class Person extends Object {
public String toString() {

return "Person";
}

}

16

Casting Objects

�Casting operator converts between primitive datatyp es
�Casting can be used to convert between objects

�Classes must be within an inheritance hierarchy
�In the preceding section, the statement
m(new Student());

�assigns the object new Student() to a parameter of the Object
type. This statement is equivalent to
Object o = new Student(); // Implicit casting
m(o);

�Casting fromSuperclass to Subclass
�Explicit casting must be used when casting an objec t from a

superclass to a subclass
�This type of casting may not always succeed
Apple x = (Apple)fruit;
Orange x = (Orange)fruit;

This statement is implicit casting, is legal because an instance
of Student is automatically an instance of Object.

9

Chapter 11: Inheritance and Polymorphism

17

The Operator instanceof

Use the instanceof operator to test whether an object is an
instance of a class:
Object myObject = new Circle();

// Some lines of code

/** Perform casting if myObject is an instance of Circle */

if (myObject instanceof Circle) {

System.out.println("The circle diameter is " +

((Circle)myObject).getDiameter());

// Some lines of code

}

To help understand casting, you may also consider t he analogy of
fruit, apple, and orange with the Fruit class as the superclass for
Apple and Orange . An apple is a fruit, so you can always safely
assign an instance of Apple to a variable for Fruit . However, a fruit is
not necessarily an apple, so you have to use explic it casting to
assign an instance of Fruit to a variable of Apple .

18

Casting Demo using Polymorphism
1. public class CastingDemo {

2. /** Main method */

3. public static void main(String[] args) {

4. // Declare and initialize two objects

5. Object object1 = new Circle4(1);

6. Object object2 = new Rectangle1(1, 1);

7. // Display circle and rectangle

8. displayObject(object1);

9. displayObject(object2);

10. }

11. /** A method for displaying an object */

12. public static void displayObject(Object object) {

13. if (object instanceof Circle4) {

14. System.out.println("The circle area is " +

15. ((Circle4)object).getArea());

16. System.out.println("The circle diameter is " +

17. ((Circle4)object).getDiameter());

18. }

19. else if (object instanceof Rectangle1) {

20. System.out.println("The rectangle area is " +

21. ((Rectangle1)object).getArea());

22. }

23. }

24. }

The circle area is 3.141592653589793
The circle diameter is 2.0
The rectangle area is 1.0

10

Chapter 11: Inheritance and Polymorphism

19

The Object Class and Its Methods

Every class in Java is descended from the
java.lang.Object class.
If no inheritance is specified when a class is
defined, the superclass of the class is Object .

 public class Circle {

 ...

}

Equivalent
public class Circle extends Object {

 ...

}

The Object class toString() method returns
a string representation of the object.

The Object class equals() method compares the
contents of two objects.

20

The toString() method in Object class

�The toString() method returns a string representati on of
the object. The default implementation returns a st ring
consisting of a class name of which the object is a n
instance, the at sign (@), and a unsigned hexadecim al
representation of the hash code of the object.

Loan loan = new Loan();
System.out.println(loan.toString());

The code displays something like Loan@15037e5 .
This message is not very helpful or informative. Us ually
you should override the toString method so that it
returns a digestible string representation of the o bject.

11

Chapter 11: Inheritance and Polymorphism

21

The equals() method in Object class

The equals() method compares contents of two objects.

For example, the
equals method is
overridden in the
Circle class.

public boolean equals(Object o) {

if (o instanceof Circle) {

return radius == ((Circle)o).radius;

}

else

return false;

}

Note The == comparison operator is used for comparing two primitive
data type values or for determining whether two objects have the same
references.

The equals method is intended to test whether two objects have the
same contents, provided that the method is modified in the defining class
of the objects.

22

The ArrayList Class

You can create an array to store objects, but the a rray’s size is fixed
once the array is created.
Java provides the ArrayList class that can be used to store an
unlimited number of objects.
Functionally analogous to the StringBuilder and Stri ng classes.
 java.util.ArrayList

+ArrayList()

+add(o: Object) : void

+add(index: int, o: Object) : void

+clear(): void

+contains(o: Object): boolean

+get(index: int) : Object

+indexOf(o: Object) : int

+isEmpty(): boolean

+lastIndexOf(o: Object) : int

+remove(o: Object): boolean

+size(): int

+remove(index: int) : Object

+set(index: int, o: Object) : Object

Appends a new element o at the end of this list.

Adds a new element o at the specified index in this list.

Removes all the elements from this list.

Returns true if this list contains the element o.

Returns the element from this list at the specified index.

Returns the index of the first matching element in this list.

Returns true if this list contains no elements.

Returns the index of the last matching element in this list.

Removes the element o from this list.

Returns the number of elements in this list.

Removes the element at the specified index.

Sets the element at the specified index.

Creates an empty list.

12

Chapter 11: Inheritance and Polymorphism

23

protected and final Modifiers

� protected modifier can be applied on data and methods in a
class
� protected data or protected methods in a public cla ss can be

accessed by any class in the same package or its su bclasses,
even if the subclasses are in a different package.

� Increasing visibility: private default protected public
� subclass may override a protected method in its sup erclass and

change its visibility to public. However, a subclas s cannot weaken
the accessibility of a method defined in the superc lass. For
example, if a method is defined as public in the su perclass, it must
be defined as public in the subclass.

� final class modifier means cannot be extended:
final class Math {

...

}

� The final variable is a constant:
final static double PI = 3.14159;

� The final method cannot be overridden by its subclasses

24

Suggested Videos

� Java (Beginner) Programming Tutorials
by thenewboston
� Java Programming Tutorial - 49 - Inheritance
� Java Programming Tutorial - 55 - Introduction to Poly morphism
� Java Programming Tutorial - 56 - Polymorphic Arguemen ts
� Java Programming Tutorial - 61 - Simple Polymorphic P rogram

� http://www.youtube.com/user/thenewboston

