
Slide Set 8 - Creating Methods

Copyright © 2006 R.M. Laurie 1

Copyright © 2006 R.M. Laurie 1

Completing the Class: Methods

�Classes provide methods to:
� Initialize values stored in each instance variable
�Display values
�Modify values

�Format of method header:
public returnType methodId(parameterlist)

�public = Method can be used in other classes
� returnType

�Method returns a value (output) of specified data t ype
� void means nothing returned

�methodID = Method Identifier
�parameterlist = Method input values

Copyright © 2006 R.M. Laurie 2

Information Hiding and Encapsulation

Information hiding
1. Protect data

inside an object
2. Do not allow

direct access
of an objects
instance
variables

Encapsulation
1. Use classes and

objects
2. Classes are templates

from which objects are
created

3. Objects include both
data items and
methods that act on the
data

� Cornerstones of Object Oriented Programming (OOP)
� Both are forms of abstraction

Copyright © 2006 R.M. Laurie 3

Access Access Access Access SpecifierSpecifierSpecifierSpecifier

public
�Any other class or program can directly

access or change a public instance variable
�Any other class or program can invoke a

public method
private
�Only a method in the same class can access

or change a private instance variable
�only a method in the same class can invoke a

private method
Instance variables should be private to
prevent inappropriate changes.

Copyright © 2006 R.M. Laurie 4

Constructor Methods

�Method has same name as class
�Automatically called each time object

created
�Purpose:

�Initialize new object’s instance variables
public class MethodExample1
{

// Data declaration section
private String sMessage;
// Methods definition section
public MethodExample1()
{

sMessage = "I like Java";
}

Slide Set 8 - Creating Methods

Copyright © 2006 R.M. Laurie 2

Copyright © 2006 R.M. Laurie 5

Accessor and Mutator Methods

�Accessor methods read values stored in
object’s variables getMethod()

�Mutator methods modify object’s data
variables after object is created

public void displayMessage()
{

JOptionPane.showMessageDialog(null,sMessage);
}

public void changeMessage(String sNewMsg)
{

sMessage = sNewMsg;
}

import javax.swing.*;
public class MethodExample1
{
// Data declaration section
private String sMessage;
// Methods definition section
public MethodExample1()
{
sMessage = "I like Java";

}
public void displayMessage()
{
JOptionPane.showMessageDialog(null,sMessage);

}
public void changeMessage(String sNewMsg)
{
sMessage = sNewMsg;

}
public static void main(String[] args)
{

MethodExample1 oMessageOne;
oMessageOne = new MethodExample1();
oMessageOne.displayMessage();
oMessageOne.changeMessage("I prefer Pepsi");
oMessageOne.displayMessage();
System.exit(0);

}
}

Where are the Constructors,
Accessors, and Mutators?

Copyright © 2006 R.M. Laurie 7

Assignment Operations

�Most basic statements for initializing variables
�Variables used in expression must have been

given valid data values for their data type
�Destination variable listed to left of equal sign
�The lowest precedence arithmetic operator
�General syntax:

�variable = expression;

�Example:
�length = 25;

�Expression
�Any combination of constants and variables

that can be evaluated to yield a result
Copyright © 2006 R.M. Laurie 8

Multiple Declarations

�Variables with same data type can be grouped
�Declared using single declaration statement
int nNum1 =300, nNum2 = 1000;
double dNum4=7.0, dNum5=10, dNum6;

�Frequently used in declaring method’s internal
variables

�You can only use one data type in each
declaration statement

Slide Set 8 - Creating Methods

Copyright © 2006 R.M. Laurie 3

Copyright © 2006 R.M. Laurie 9

Coercion is a change in Values Data Type

�Coercion changes the data type of the
calculated value, not the variable data type
�int value will automatically change to a double
�double value will NOT automatically change to int

�For example:
double dX;
int nY = 5;
dX = nY;

�Since nY is an integer and dX is a double, the value
returned by nY must be converted to type double
before it is assigned to dX

� The data type hierarchy (from lowest to highest):

byte short int long doublefloat

Copyright © 2003 R.M. Laurie 10

+ Unary Do Not Change Sign
- Unary Change Sign
nValue = -5;

nValue = +(nValue - 1); // -6

nValue = -(nValue - 1); // 7
nValue = -(nValue - 1)+(-(+nValue)); // -13

Counting Operators
++ Increment

nCount++; // Equivalent nCount=nCount+1;

-- Decrement
nCount--; // Equivalent nCount=nCount-1;

Arithmetic Operators Arithmetic Operators Arithmetic Operators Arithmetic Operators + - ++ --

Copyright © 2006 R.M. Laurie 11

Compound Assignment Operators

�Variable to left of equal sign can also be used
to right of equal sign

�Shortcut assignment operators:
� A += 2; A = A + 2;

� B -= 1; B = B - 1;

� C *= 4; C = C * 4;

� D/=2; D = D / 2;

� E%=5; E = E % 5;

�Accumulating
� nTotal = nTotal + nPrice;

� nTotal += nPrice;

Copyright © 2006 R.M. Laurie 12

Program Design and Development

�Object-oriented programming
�Emphasis on attributes and object behavior

�Object Identification
�Model

�Representation of problem

�Attributes
�Define properties of interest

�Behaviors
�Define how object reacts to its environment

�Procedure-oriented programming
�Emphasis on tasks to be performed
�The old way to program, but still useful for method s

