
Proceedings

SPIE Volume 855

IECON ‘87:
Small Computer
Applications-

Hardware and Software
1987 International Conference on

Industrial Electronics, Control, and Instrumentation

Phillip Gold
Chair/Editor

Sponsored by
IEEE Industrial Electronics Society

in association with
Society of Instrument and Control Engineers of Japan

and
SPIE-The International Society for Optical Engineering

3 November 1987
Cambridge, Massachusetts

 SPIE (The Society of Photo-Optical Instrumentation Engineers) is a nonprofit society dedicated to advancing engineering
and scientific applications of optical, electro-optical, and optoelectronic instrumentation, systems, and technology.

IECON ‘87: SMALL COMPUTER APPLICATIONS-HARDWARE AND SOFTWARE

SPIE Volume 855

Contents

About This Volume . i i i

Conference Committee . v

Welcome to lECON’87 . v i

Keynote Speaker Biography . v i i

Conference Introduction466

SESSION 1. SMALL COMPUTER APPLICATIONS I. 467

855-01 Microcomputer based real-time control, R. Z. Zurawski, D. K. L. Wong, Royal Melbourne Institute of Technology
(Australia) . 468

855-02 State machine architecture optimized for sequential control, R. M. Laurie, P. H. Lewis, Michigan Technological
Univ. (USA). .477

855-03 Microcontroller based smart control cell, S. Velamuri, V. T. Gobburu, National Semiconductor Corp. (USA).482

855-04 Fault-tolerant multiprocessor for real-time control applications, T. E. Roberts, B. W. Johnson, Univ.of Virginia
(USA) .488

855-05 Design and implementation of a testable and reconfigurable interrupt circuit for industrial control
applications, D. V. Poornaiah, M. 0. Ahmad, Concordia Univ. (Canada). 4 9 7

855-06 Personal computer control of electric drives, F. Benzi, Univ. of Pavia (Italy); G. Buja, Univ. of Trieste (Italy);
D. Ciscato, Univ. of Padova (Italy). .506

855-07 Multilevel microcomputer structured system for supervisory monitoring, J. Kon, M. Pravdic, Mihajlo Pupin
Institute (Yugoslavia). .512

SESSION 2. SMALL COMPUTER APPLICATIONS II. .519

855-08 Industrial-use personal computer applied to a laser marking system, M. Nakamura, M. Miyoshi, H. Aoyama,
M. Niizuma, Fuji Electric Co., Ltd. (Japan). .520

855-09 Framework for programming, M. Schaffner, lstituto di Fisica deII’Atmosfera (Italy).. .527
855-10 Sequential control synthesis using state tables, R. M. Laurie, P. H. Lewis, Michigan Technological

Univ. (USA) . 5 3 5

855-11 Small engineering workbench on a personal computer, S. Ishijima, Tokyo Metropolitan Institute of Technology
(Japan); M. Ido, ISL, Inc. (Japan). .542

855-12 Personal computer based controller for switched reluctance motor drives, X. Mang, R. Krishnan,
S. Adkar, G. Chandramouli, Virginia Polytechnic Institute and State Univ. (USA). .550

855-13 TALOS-a real-time distributed image analysis/synthesis system: structural design and Petri-net
modeling, N. G. Bourbakis, George Mason Univ. (USA) and Computer Technology Institute (Greece)..556

855-14 Microcomputer station data base organization for accounting measurement of electrical energy
consumption, M. Pravdic, Mihajlo Pupin Institute (Yugoslavia). .561

Author lndex .ix

iv / IECON ‘87

Sequential Control Synthesis Using State Tables

Robert M. Laurie and Paul H. Lewis

Michigan Technological University, Department of Electrical Engineering
Houghton, Michigan 49931

ABSTRACT

State transition techniques offer many advantages
over relay ladder logic as programming and design
tools for implementing sequential control algorithms
on programmable controllers. Presented in this paper
are the state transition diagram, the Petri net, and
state table representations for a parallel
asynchronous sequential control process. The
attributes and limitations of each technique are
discussed, and a state table format is presented with
the capability of representing parallel asynchronous
sequential processes.

1. INTRODUCTION

Sequential control is characterized by current events
being dependent on past events. Control is
determined not only by the value of control signals
but also by their order of occurrence. Conceptually,
sequential contro l i s viewed as a discrete
(noncontinuous) process. Sensor and actuator signals
are discrete in nature, with a finite number of
possible values. Generally, the control algorithm can
be expressed as a sequence of actions and conditions,
rather than algebraic differential equations as in
continuous control. Sequential control is usually
characterized by complex cyclical behavior, while
continuous control tends to act in response to
continuous input signals.

The container transfer system, shown in Figures la
and lb, is an example of a sequential control
application. The controller implements the
programmed control algorithm by transmitting
discrete actuator-signals to the plant dependent upon
discrete sensor-signals received from the plant.
Controller functions such as timers and counters can
also be included in the control algorithm.

2. RELAY LADDER LOGIC

Initially, relay logic was the primary means of
implementing sequential control. Today,
programmable controllers have replaced
electromechanical relays in most applications to
reduce the cost of implementation and improve
system reliability. Programmable controllers

commonly use a graphical language called Relay
Ladder Logic to program a sequential control
algorithm using relay schematic symbology.
Although this language resulted in quick acceptance
by industry, it did not improve design methods for
sequential control,

The primary disadvantage of relay ladder logic is
that it is a combinational design method and does not
describe the sequential progression of the operation.
If one symbol is changed, it may affect any other
part of the program. The current state of the system
is not explicitly given, which makes designing and
debugging very difficult for complex systems.

Sequential control designers are demanding much
more of programmable controllers than what they
were originally designed for. Applications have
become more complex, and so has the need for
improved design and implementation methods.
Relay ladder logic has no formal way of
implementing such important design techniques as
algorithm partitioning, distributed control, fault
detection, fault diagnostics, or redundancy [1,3].

3. SEQUENTIAL CONTROL EXAMPLE

The container transfer system illustrated in Figures
la and 1 b will be used as an example to compare
various synthesis techniques. It depicts a material
handling system which could be used in mining
operations. Sensors are represented by triangles and
labeled with a lower case letter, while actuators are
depicted by an upper case letter with an arrow
pointing to the direction of actuated motion. The
process begins with the operator engaging the start
switch (s). The horizontal cart will move left (Q)
until sensor (q) is activated, and the vertical cart
will move down (D) until sensor (d) is activated. As
shown in Figure la, the horizontal cart will then
unload its container by activating its conveyor (B)
until sensor (b) is de-activated. The vertical cart is
loaded by activating both its conveyor (M) and the
mine conveyor (N) until sensor (m) is activated.
The horizontal cart will then move to the right (R)
until sensor (r) is activated, and the vertical cart
will move up (U) until sensor (u) is activated. The
carts are now in position to transfer the container as
shown in Figure lb. The conveyors of both carts are
turned on (M and B) until sensor (m) is de-activated

CH2484-4/87/0000/0535$01.00 0 1987 IEEE IECON ''87 / 535

Figure 1a: Container Transfer Between Conveyors And Carts

Actuator Signals
Q = Move Horizontal Cart Left
R = Move Horizontal Cart Right
B = Turn On Horizontal Cart Conveyer
U = Move Vertical Cart Up
D = Move Vertical Cart Down
M = Turn On Vertical Cart Conveyor
N = Turn On Lower Conveyor
H = Sound Alarm

Figure lb: Container Transfer Between Carts

Sensor Signals
s = Start Switch
q = Horizontal Cart At Left Position

= Horizontal Cart At Right Position
f, = Container Loaded On Horizontal Cart
U = Vertical Cart At Up Position
d = Vertical Cart At Down Position
m = Container Loaded On Vertical Cart
h = Resume Operation Switch

Controller Functions
tl = Count Down Timer #1
cl = Counter #1

ControlsFlBs
8h

536 / IECON'87

and sensor (b) is activated. If the start button is
engaged, this cycle will repeat itself with the
horizontal cart moving to the left and the vertical
cart moving down.

The common fault mode for this system would be
the vertical cart jamming in the move up mode.
Fault detection can be included in the control
algorithm by having a timer send an alarm to the
operator if sensor (u) is not activated within a
reasonable time after the vertical cart begins moving
up. Once the problem has cleared, the operator
should then push a resume operation switch and the
operation will continue. A counter can also be
included as part of the control algorithm to count the
number of containers taken from the mine.

4. STATE TRANSITION TECHNIQUES

State transition techniques have been widely used as
a design and analysis method for digital computer
systems and have recently been adapted for use with
sequential control. Unlike relay ladder logic
diagrams which use combinational methods to
implement sequential control, state transition
techniques show sequential behavior explicitly, All
information about past behavior, which is required
to determine future behavior, is defined by the
currently active state. For all state transition
techniques, the current state of the system is always
known. Therefore, state transition techniques are a
natural and highly structured synthesis method for
implementing sequential control.

Discussed in this section are two graphical techniques
called the state transition diagram and the Petri net.
Also presented is the state table, which is a tabular
representation of the sequential control algorithm.
The state transition rules for each of these three
techniques are uniform. Therefore, each may differ
from the more classical state transition
representations used for digital design.

4.1. The State Transition Diagram

The state transition diagram for the example is
shown in Figure 2. Each state is represented by a
circle enclosing a state number and action list.
Directed lines between circles represent transitions
which occur if the conditions, given in the condition
list next to the directed lines, are met. When a state
is first entered, the actuator specified in the action list
is either turned on as indicated by “B” or turned off
as indicated by “B”. The actuator remains on or off
unless it is toggled in a succeeding state. Only one
state may be active at any time.

This state transition diagram representation differs
from the classical Mealy or Moore description.
However, it is the ‘opinion of the authors that this

representation contains all necessary information
without redundant symbology.

The state transition diagram is a very explicit
method of describing sequential control. The desired
sequence is easily designed and debugged. The
graphical approach makes it easily interpreted,
especially for cases with several transitional paths
between states. Since only one active state exists at
any time, the progression of control is easily
understood. Only the conditions that are specified
for leaving the active state need to be polled by the
sequential controller.

A disadvantage of state transition diagrams is that
algorithms requiring the crossing of transitional
paths can become confusing. No formal way of
representing parallel asynchronous processes exists.
It is not well suited for describing global control.

4.2. The Petri Net

The Petri net is a graphical method in which the
states of the system are defined by the position of
tokens on places in the net. The Petri net for the
example is shown in Figure 3. A place is represented
by a circle with a number label, and the initial place
is symbolized by two concentric circles. A right
angle bracket to the right of each circle contains the
action list which is executed when the place is first
entered. Directed links indicate the flow of control
between places, which is from top to bottom unless
otherwise indicated by an arrow. Transitions
through a link are represented by a short horizontal
line with the associated condition list to the right.
The placement of a token on a place signifies that the
step is active. The double horizontal line represents
an increase or decrease in the total number of tokens.
This representation is similar to that used by the
GRAFCET sequential programming language [7].],

To understand how the Petri net operates consider
the example, illustrated in Figure 3. Beginning at
place 1 with a single token, actuators (M) and (B) are
turned off. No further action occurs until sensor (s)
is activated. At this time, the token count is
increased to two, the tokens are advanced to places 2
and 6, and their action lists are executed. The two
tokens progress independently through each of their
place sequences until both places 5 and 9 are active.
When this occurs, the token count is reduced to one
and a single token advances to place 11.

The advantage of using Petri nets is that parallel
asynchronous processes can be represented directly.
The number of active places can be increased or
decreased at the double horizontal lines to follow
each of the parallel processes independently. As
shown in Figures 2 and 3, the placement of tokens on
the eleven different places of the Petri net can result
in a simplified algorithm over the twenty-two states

IECON ‘87 / 537

Figure 2: State Transition Diagram For Container Transfer System

/ s uu

r r

538 / IECON ‘87

Figure 3: Petri Net For Container Transfer System

t
d

m

required of the state transition diagram. This is
because the state transition diagram must have a
separate state for all possible combinations of token
placements on the Petri net. This reduction in
complexity makes the Petri net an excellent choice
for the design of global controller algorithms.

A disadvantage of Petri nets is that nets become
confusing when several transitional paths exist
between places. Petri nets have no advantage over
state transition diagrams for local control (single
active place) applications.

4.3. The State Table

The state table is a tabular representation of the
control algorithm. Its use has been suggested for
complex digital logic designs [5]. The state table
representation for the example is shown in Figure 4.
Four columns exist in the state table: the state label,
which includes the state number; the action list,
which is executed when the state is entered; the
condition list, which defines conditions for a state
transition to occur; and the new state, which is
entered if a state transition occurs.

IECON ‘87 / 539

Figure 4: State Transition Table For Container Transfer System

STATE LABEL ACTIONS LIST CONDITIONS LIST ~. NEW STATE

1: Ready M B S 2, 6

2: Horz. Cart Left Q q 3

-
3: Unload Horz. Cart QB -6 4

4: Horz. Cart Right BR r 5

5: Wait for Vert. Cart iz State 9 11

6: Vert. Cart Down D d 7

7: Load Vert. Cart EMN m 8

u 9
8: Vert. Cart Up MNU tl=180s t

tl=O 10

9: Wait for Horz. Cart UT

10: Sound Alarm UH h 9

11: Transfer Container M B cl=cl+l mb 1

Global control can be implemented on a state table if
the capability exists for increasing or decreasing the
number of active states. An increase in the number
of active states can be represented simply by putting
multiple state numbers in the new state column as
shown in Figure 4, state number 1. A decrease in the
number of active state is represented in Figure 4
beginning with the state 5 row. One state is chosen
as the decision state (State 5) and all other parallel
terminating states are called wait states (State 9).
Wait states mark the end of a parallel process and
have no condition list. The decision state contains
wait state numbers in the condition list, and when
all wait states are activated the transition to the new
state occurs. The new state is called the reduction
state (State ll), because the total number of active
states is reduced by the number of wait states
specified in the decision state’s condition list.

Multiple transitional paths are represented by
multiple rows for the condition list and new state
columns. This is illustrated in Figure 4 by the state
8 row. The state table is always readable, no matter
how many transitional paths exist, since all
transitional paths are easi ly represented by
condition-list/new-state rows.

The state table of Figure 4 represents the same
sequential control algorithm as described by the Petri
net of Figure 3. This is possible because the state
transition rules for the state table are the same as the
token firing rules for the Petri net. This may allow
Petri net verification and reduction techniques to be
applied to state tables [4,6]. The state transition
diagram control algorithm could also be used to
generate the state table, since the state transition

540 / IECON'87

Robert M Laurie

Robert M Laurie

Robert M Laurie

Robert M Laurie

Robert M Laurie

rules are identical. The resulting table would have
twenty-two rows of states and would not use the
multiple active state functions described in the
preceding paragraph.

4.4. Selecting The Optimal Technique

All three state transition techniques can be used to
synthesize sequential control algorithms; however,
the best choice depends on the requirements of a
particular application. For global control, either the
Petri net or state table should be chosen. For local
control, the state transition diagram is often less
confusing than the Petri net. Graphical methods are
preferred for simple applications, since the transfer
of control is more obvious. However, as applications
become more complex, graphical methods become
cumbersome and state tables are the preferred
approach. Consider the system with sixty states and
thirty transitional paths between each of the states.
For this case, either graphical approach would be
confusing and the state table should be used.

Several programming languages have been proposed
for state transition techniques [1,3,7]. A state table
based programming language would maximize
capabilities and versatility. The state transition
diagram or Petri net can best be utilized in the
conceptualization phase. As the control algorithm
becomes more complex, graphical languages tend to
grow in two dimensions while a tabular language
will grow in only one dimension. Therefore, a
tabular language would be more readable when using
conventional CRT or printer output to list the
control algorithm. Either graphical method can easily
be converted to a state table; however, to base a
programming language on graphical methods would
limit its capabilities.

A state table language can reside in either a
translator or compiler environment. The authors
have constructed a compiler, using a two pass
assembler [1]. The compiler converts a very readable
state table description into application code, which is
executable by the state machine processor [1, 2]. The
resulting application code is very compact.

5. CONCLUSION

State transition techniques are very useful in
synthesizing sequential control algorithms. They are
well adapted for sequential control purposes and
show the sequential behavior of the system
explicitly.

The state table is an excellent choice as a sequential
programming language. It is the opinion of the
authors that a table formatted language will produce
the most structured and readable code.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

6. REFERENCES

Laurie, Robert M., “An Optimized Sequential
Controller For Implementing State Transition
Techniques”, M. S. Thesis, Department of
Electrical Engineering, Michigan Technological
University, Houghton, MI., February 1986.

Laurie, Robert M. and Paul H. Lewis, “A State
Machine Architecture Optimized For
Sequential Control”, IEEE Industrial
Electronics Society Conference, Cambridge,
MA., November 1987.

Hopkins, Albert L., Jr., “Software Issues in
Redundant Squential Control”, IEEE
Transaction on Industrial Electronics, Vol IE-
29, No 4, pp 273-278, November 1982.

Johnsonbaugh, Richard and Tadao Murata,
“Petri Nets and Marked Graphs - Mathematical
Models of Concurrent Computations”, The
American Mathematical Monthly, Vol 89, No
8, pp 552-556, October 1982.

McPhillips, A. Scott, “Designing Logic with
Software”, Proceedings IEEE 1978 MICRO-
DELCON, The Delaware Bay Microcomputer
Conference, pp 7-11, March 1978.

Esteban, P., R. Valette, and M. Couvoisier,
“Simplified Algorithms For Petri Net
Analysis”, IEEE Industrial Electronics Society
Conference, Milwaukee, WI., October 1986.

Lloyd, Mike, “Graphical Function Chart
Programming for Programmable Controllers”,
Control Engineering, Vol 32, No 10, pp 73-76,
October 1985.

IECON ‘87 / 541

A State Machine Architecture Optimized For Sequential Control

Robert M. Laurie and Paul H. Lewis

Michigan Technological University, Department of Electrical Engineering
Houghton, Michigan 49931

ABSTRACT

State transition techniques have shown the greatest
potential as a synthesis technique for sequential
control; however, to maximize the efficiency of these
techniques, a new programmable controller software
architecture must be developed. The sequential
controller design described in this paper utilizes a
state machine and state table architecture. The
sequential controller is capable of implementing
control algorithms based on either Petri net, state
transition diagram, or functional state table
descriptions.

1. INTRODUCTION

The majority of sequential control applications
currently use a programmable controller (PC) as the
sequential controller. The PC uses a programming
language called relay ladder logic to activate discrete
outputs based on the current values of discrete
inputs. The PC operates as a program scanning
translator, in which the entire program is rapidly
scanned in an effort to simultaneously execute the
combinational logic statements. This architecture has
inherently slow response times, which will increase
linearly with program size. Relay ladder logic is not
well suited as a sequential control programming
language. It is a combinational method and does not
describe the sequential progression of the operation
[1,2,3,5].

State transition techniques have shown the greatest
potential as a synthesis technique for sequential
control. They have been used for design and analysis
of digital computer systems and have recently been
adapted to industrial sequential control. To reap the
real benefits of state transition techniques, a new
type of architecture must be developed for
programmable controllers. Response times are
expected to be several orders of magnitude faster
with the state machine and state table architecture
presented in this paper.

2. FUNCTIONAL REQUIREMENTS

The sequential controller rnust execute the basic
control functions common among programmable

controllers. These functions include discrete I/O
checking and manipulation, counter operations, timer
alarms, and user-data register manipulation.

All functions required by state transition techniques
must be executable on the sequential controller.
Transferring from a state transition technique
representation of the control algorithm to the
required application data m u s t b e easily
accomplished. The coded application data should be
compact and require minimal processing time.

A terminal display of discrete I/O and currently
active states is necessary for debugging the control
algorithm and monitoring the system.

3. CONTROLLER ARCHITECTUREE

The state machine is the processor which operates on
data contained in the state table to implement a
particular sequential control algorithm. Block
diagrams of both the state machine and state table
architectures presented in this paper are shown in
Figure 1.

3.1. The State Machine
The state machine consists of four sections: the
initialization section, the sequencing section, the
action list processing section, and the condition list
processing section. The initialization section
performs all operations required to initialize the state
machine for a particular control application. The
sequencing section performs the sequencing required
to implement the control algorithm. The action list
and condition list processing sections are called as
subroutines within the sequencing section. When a
state is first activated, action list processing occurs;
otherwise, condition list processing occurs.

Global control of parallel asynchronous systems can
be implemented by the state machine if the
capability exists for executing multiple active states.
The state machine described in this paper provides
this capability. The number of active states can be
increased or decreased, just as the token count can be
changed for the Petri net. Therefore, the state
machine architecture described in this paper is based
on the token player concepts of the Petri net
[1, 2, 4, 5] ,4,5].

CH2484-4/87/0000/0477$01.00 0 1987 IEEE IECON ‘87 / 477

Figure 1: Sequential Controller Architecture

STATE MACHINE
BLOCK DIAGRAM

INITIALIZATION
SECTION

Initialization of:
Machine Registers,
Display, Interface,
Real Time Clock.

SEQUENCING
SECTION

Write to Outputs

Read from Inputs

Display Update

STATE TABLE
BLOCK DIAGRAM

Input/Output
DECLARATION:

A

ALGORITHM
SECTION

1 InitiaD..;;tion)

State Number
Action Lists

Condi?:: Lists ~

State machine registers are RAM locations required
for operation of the state machine. These RAM
locations are used to represent pointers, active-state
registers, flags, input and output data buffers, and
user-data registers. State machine registers are the
only RAM locations required for a sequential
controller implementation, because the state machine
program and state table data are accessed in read-
only mode.

3.2. The State Table
The state table contains machine coded data defining
a sequential control algorithm. The name state table
has also been used in the literature to refer to a table
formatted algorithm description. For the purposes of
this paper, the table formatted algorithm description
will be referred to as the the functional state table.
The state table contains the I/O declaration section
and the algorithm section. The I/O declaration
section assigns a label to all possible states of inputs
and outputs. The algorithm section contains the data

describing the sequential control application. The
algorithm section m a y b e g e n e r a t e d f r o m a
funct ional s ta te table , a Petr i net , or a s ta te
transition diagram representation of the control
algorithm.

A functional state table format is the best choice for
generating the algorithm section. Graphical methods
may be used to design a sequential control algorithm;
however, to base an input-data format on a graphical
format would limit the sequential controller’s
capabilities [2].

4. STATE MACHINE OPERATION

The state machine begins execution by initializing
registers, the display, the real time clock, and the I/O
interface, as described by initialization data in the
state table.

Sequential control begins as the state machine enters
the sequencing section. A flow chart of the
sequencing operation is shown in Figure 2. Outputs
are activated as specified by the output data buffer,
and input conditions are stored in the input data
buffer. The next active state is determined by
incrementing the pointer to the next active-state
register. I f a t ransi t ion to this s tate has just
occurred, the s ta te ’ s ac t ion l i s t i s processed;
otherwise, the state’s condition list is processed. The
location of the state’s action list or condition list is
determined from the state number vector table as
shown in Figure 1. Action list processing can
manipulate outputs, increment counters, set timer
alarms, change the number of active states, or
manipulate user-data registers. These actions will
occur only when the state is first entered. After an
action list has been executed, transition conditions
are checked every time this active state is called by
the state machine. These transition conditions may
be based on inputs, timer alarms, counters, the value
of user-data registers, or the state number of other
active states. After act ion or condit ion l ist
processing has occurred for an active state, the
elapsed time and display are updated. After all
active states have been executed, inputs are read,
outputs are activated, and the active-state pointer is
reset.

The described state machine uses polling to check
inputs. Polling was chosen over an interrupt-driven
structure, because it minimizes external hardware
and eliminates potential race conditions.

5. DATA FORMATS

Specific data formats have been chosen for the state
machine and state table to minimize memory

478 / IECON ‘87

requirements and maximize processing speeds. The
data formats presented are for an 8-bit data word.

5.1. The State Machine
The state machine uses specific data formats for state
machine registers. The active-state registers contain
the currently active-state numbers as specified by the
format shown in Table 1. Bits 7 through 1 specify
the state number. Bit “0” identifies whether action or
condition list processing should occur. State number
“0” is reserved as an end of active states marker.
Using this format, a maximum of 127 states could be
specified for a state machine designed for an 8 bit
word length. If the word length of the state machine
was increased to 16 bits, up to 32,767 states could be
specified. Flags are byte accessible so that processing
time will be minimized. Flags are only checked for
zero or non-zero values. User-data registers are byte
accessible.

Figure 2: Sequencing Section Flow Chart

From Initialization Section

Reset Active State Pointer

Write tP Outputs

Read from Inputs
I

Get Next Active State

YES
.

ACTION LIST

,, PROCESSING \
1

Table 1: Data Formats for Controller

ACTIVE STATE REGISTER FORMAT

Bit # 76543210
pm;;

= End of Active States Marker
xxxxxxxl = Action List Processing
xxxxxxxo = Condition List Processing

xxxxxxx = State Number (1 - 127)

ACTION LIST COMMAND FORMAT

Bit # 76543210
.
OOrrrrrr = Force Off Discrete Output
Olrrrrrr = Force On Discrete Output
laaaaaaa = Action List Function

rrrrrr = Output Bit Number
aaaaaaa = Action List Function

Operation Code

CONDITION LIST COMMAND FORMAT

Bit # 76543210
.
oouuuuuu = Check for Off Discrete Inpu’
01uuuuuu = Check for On Discrete Input
lccccccc = Condition List Function

uuuuuu = Input Bit Number
ccccccc = Condit ion List Function

Operation Code

5.2. The State Table
The most common action or condition list command
will be discrete I/O manipulation and checking.
Therefore, a single byte instruction will be used to
manipulate a discrete output for act ion l ist
processing and check a discrete input for condition
list processing. As shown in Table 1, the format for
discrete I/O commands always begins with a “0” for
bit 7. If the discrete I/O is either forced on or
checked for on, bit 6 will equal “1”. If the discrete
I/O is either forced off or checked for off, bit 6 will
equal “0”. Bits 5 through 0 represent the discrete I/O
bit number. Up to 64 discrete I/O points can be
accessed using this format for an 8-bit data word. If
a 16-bit data word is used, up to 16,384 discrete I/O
points are accessible.

Action l ist and condit ion l ist functions are
represented by a single byte command with bit 7
equal to a “1”, as shown in Table 1. Each list
function has a mnemonic label and operation code, as
illustrated in Tables 2 and 3. Operands follow the
list function commands, just as operands follow
assembly language commands. Up to 128 different

IECON ‘87 / 479

action l ist commands and 128 condit ion l ist
commands may be supported by a state machine
with an 8-bit data word.

Basic action list functions are described in Table 2.
User-data register functions are included for
arithmetic operations and register transfer
operations. A timer alarm function is provided to set
a real-time alarm. The EXPAC function is used to
increase the total number of active states for parallel
asynchronous control algorithms. HLTSQ is used to
halt sequencing and send a message to the operator.
A no-operation function is provided to simply take
up byte space during the debugging process, and the
ACEND command marks the end of action list
processing.

Basic condition list functions are described in Table
3. Functions are provided for comparing user-data
registers and to check if a data value has been
reached. These commands are especially useful for
counters. A timer alarm function is included to test
if a previously set real-time alarm is now in the
alarm condition. The BLKOR command marks the
end of a set of conditions which are logically OR’ed

Table 2: Action List Functions

MNEMONIC OP. DESCRIPTION
SYMBOL CODE
LOADR 80H Load a user-register

with immediate data.
MOVER 81H Move data between

user-registers.
INCRG 82H Increment data in

user-register.
DECRG 83H Decrement data in

user-register.
ADDIM 84H Add immediate data to

user-register.
SUBIM 85H Subtract immediate data

from user-register.
ADDRG 86H Add two register values

together.
SUBRG 87H Subtract first register

value from second.
TIMES 88H Set real time alarm.

EXPAC 89H

HLTSQ 8AH

ACNOP 8BH

Expand the number of
active states.
Halt sequencing and
send message.
No operation.

ACEND 8CH Marks the end of
action list.

with the next set of conditions. TRANS marks the
end of a set of conditions and specifies which state
control is transferred to, if these conditions are met.
The command CONAC is used to decrease the total
number of active states if the specified state numbers
are now active. The CNEND command marks the end
of the condition list.

6. CONTROLLER IMPLEMENTATION

A sequential controller was constructed in the
laboratory using the architecture described in this
paper [1]. It was implemented on an MC6809 based
microcomputer system. All software was written in
assembly language to generate the most compact and
efficient code. An assembler was used to convert a
functional state table representation of the control
algorithm into machine code for the state table.

Table 3: Condition List Functions

MNEMONIC OP. DESCRIPTION
, SYMBOL CODE

CMPGE 80H Compares user-registers
for greater or equal.

CMPGT 81H Compares user-registers
for greater than.

CMPEQ 82H Compares user-registers
for equal.

CMPNE 83H Compares user-registers
for not equal.

CIMGE 84H Immed. data to register
compare greater or equal.

CIMGT 85H Immed. data to register
compare greater.

CIMEQ 86H Immed. data to register
compare equal.

CIMNE 87H Immed. data to register
compare not equal.

CIMLE 88H Immed. data to register
compare less or equal.

CIMLT 89H Immed. data to register
compare less than.

TIMET 8AH Real time alarm
activated?

BLKOR 8BH Logically or two
conditional blocks.

TRANS 8 C H If conditions true,
transfer to new state.

CONAC 8DH Contract the total number
of active states.

CNNOP 8EH No operation.

CNEND 8FH Marks the end of
condition list.

480 / IECON ‘87

The state machine program was compact and efficient.
The program required less than 1700 bytes of
memory. Response time was minimized, because the
state machine checked only the conditions which
would cause a state transition to occur.

State tables were easily generated for several
sequential control systems. For all systems, the state
table code was extremely compact. Two parallel
asynchronous system examples were found in
references [2] and [5]. The state table for the
container transfer system of reference [2] required
only 148 bytes of memory, and the state table for
the three station automated drilling system of
reference [5]] required 215 bytes of memory.

7. CONCLUSION

A sequential controller was designed using a state
machine and state table architecture. The sequential
controller is optimized in the sense that the control
algorithm machine code is exceedingly compact and
the response time is minimal. The control algorithm
is entered using a functional state table format, so
any state transition technique could be used to
generate the control algorithm. Testing with several
sequential control systems was successful, and the
application state tables were obtained quickly and
without difficulty.

[l]

[2]2]l

[3]

[4]

[5]

6. REFERENCES

Laurie, Robert M., ‘An Optimized Sequential
Controller For Implementing State Transition
Techniques”, M. S. Thesis, Department of
Electrical Engineering, Michigan Technological
University, Houghton, MI., February 1986.

Laurie, Robert M. and Paul H. Lewis,
“Sequential Control Synthesis Using State
Tables”, IEEE Industrial Electronics Society
Conference, Cambridge, MA., November 1987.

Hopkins, Albert L., Jr., “Software Issues in
Redundant’ Sequential Control, IEEE
Transaction on Industrial Electronics, Vol IE-29,
No 4, pp 273-278, November 1982.

Johnsonbaugh, Richard and Tadao Murata, “Petri
Nets and Marked Graphs - Mathematical Models
of Concurrent Computations”, The American
Mathematical Monthly, Vol 89, No 8, pp 552-
556, October 1982.

Lloyd, Mike, ‘Graphical Function Chart
Programming for Programmable Controllers”,
Control Engineering, Vol 32, No 10, pp 73-76,
October 1985.

IECON '87 / 481

	Cover
	Table of Contents
	Sequential Control Synthesis
	State Machine Architecture

