Slide Set 8 - Programming Introduction

Software = Computer Programs

“*Program: Set of step-by-step
instructions that direct the computer to
do a task and produce correct.

“*Programming Language: Set of rules
that instructs the computer what
operations to perform.

s*Programming is Fun!

¢ Simpler than human language
¢ Usually about 50 keywords

¢ Automates structured tasks
¢ Very logical without emotions —

S
¢ Computer becomes your slave —

Copyright © 2019 R.M. Laurie

1

People = End Users & Programmers

«End User's = IFSM201, IFSM300
¢ Utilize computer resources and applications
< Programmers = CMIS102 or CMST385
#Analyze problem and create solution algorithm
#Code the solution algorithm into a specific
programming language
#Verify program works using known test data
¢ High demand career field with high pay
“UMUC coding courses
¢ Programming: CMIS102 > CMIS141>CMIS242

¢ Web Design:
IFSM201->CMST385->CMST386->CMST388 P ;

Copyright © 2019 R.M. Laurie 2

Programming Language Generations

% 1st = Machine Language
¢ Actual bits that CPU processes
< 2" = Assembly Language
¢ Each assembly instruction corresponds to one
machine code instruction
¢ Requires an assembler to convert assembly source
code to machine code
< 3rY = High-level Language
¢ Uses human words for keywords
¢ Abstract and general purpose
¢ Requires a compiler or interpreter to run
¢ Compiles for different CPU's

<+ 4" = Application Language

¢ SQL for databases Copyright © 2019 R, Lauri

Copyright © 2019 R.M. Laurie

“*Lowest level programming o000

language because it represents D000 |86

H H D001 |12
data and program instructions ;, 35
as binary 0/1. Generally, D003 [0C|
hexadecimal is used for human D3¢ |57
interaction. D006 [00]

<All programming languages poos (o1

are eventually converted into Doo9 [10]

machine language. Do 18T
“*Will be run on only one type of Do0oC |01]
CPU

FFFF

Copyright © 2019 R.M. Laurie 4

Slide Set 8 - Programming Introduction

MCG6809 Simple 8-hit Computer Second Generation: Assembly Language
All Computer Systems contain minimally one CPU Assembly Program is assembled to machine code by Assembler
(Central Processor Unit) and Memory that are i Address _Instructions _Data i i Assembly Language Programi
interconnected by the data, address, and control buses 1 D000 86 12 TN #$12
- 1 D002 8B oc i i ADDA #$0C
Central P Unit emor I i :
SIS Srodeseor = DATA BUS Address. Data 1 D004 B7 D100 : :sta gp10e
M, - D) i i :
T X — Index Register 1 8 Lings (0000) | AC + D007 BB D110 . : appa $D110 :
¥ - Index Regist Jeanes] ' P :
U - Use: ;:ac:g;(su::er Bidirectional (0001) | OF | gggg :; 1Dé01 v STA $n1e1
S- Hardware Stack Pointer — ' o H
PC - Program Counter (0002) | 86 H i ADDA #$1E H
A~ Accumulator | B - Accumulator ADDRESS BUS — :DOOF B7 Do1B ' 1 BCC $D019
IS — | p— s ven ' [H
2 o “15 - An) ! D012 86 00 ! g LDA #$ee :
Arithmetic||Contrl 16 Lines (FFFE) | 84 ' D014 B7 D110 v i
Logic 7 o —— ' i STA $D110 i
Unit Unit | [E[F[HI[N]Z[C[V] ——————————| (FFFF) | OF D017 23 D007 i I BRA $D@O7 :
~ Cond Code Reg. | CONTROL BUS e i i i
®AI, Clk) DotA - 3F i ST
conyignio 201 ror.tame | 5 Gopyright @ 2019 R M. Laure

3rd Generation: High-Level Language Python Historical Development of HLL
: " - «+ FORTRAN: 1957, Engineering and science applications.

il ISollicalcod QSR RonIs il ax ‘ < COBOL: 1959, Develgped forgbusiness appli:a:)tions.

https://youtu.be/lillW-ovx0Y < BASIC: 1965, Interpreted language, Easy to program with DOS.
1. # How many Macaws are needed to carry a coconut? <+ C: 1975, Procedural Oriented (verbs), efficient structure and fast
2. # Author: Robert Laurie & C++: 1985, Added several keywords to C so that could be used
3. import math #Required to use math.ceil function glsajzgtc:rl:f:ntsc))l:gtnhtggtﬁ;%gt':sr:(‘;n(lcgr{?sr;guage, OOP focuses on
4. flarryRatio = 1/3 #float carry ra'.c1o is 1/3 of weight <+ Java: 1993, Pseudo-Compiled language generates bytecode
5. nCoconutit = 1450 #int Coconut weight = 1450 grams which runs on any Java Virtual Machine to achieve OS and CPU
6. nMacawht = 900 #int Macaw bird weight = 900 grams Independence; Developed as a simplified OOP language that
7. fCarryWt = nMacawWt * fCarryRatio #float Calculation supports Networks, Security, and Multithreaded for multitasking.
8. # help(math.ceil) can get info about a function < :JavaScript: 1995,_Interpreted L_an_guage, utilizes JS interpreter
9. nMacawQty = math.ceil(nCoconutWt/fCarryht) X in web browser; Object-based; Similar syntax to Java and C++.
10. # Display results with description string « Python: 2005, Interpreted, Procedural or OOP, Good 4 beginners.
11. print(nMacawQty, "macaws needed to carry one coconut") % Ruby: 2007, Interpreted Language, Purely OOP
e «»+» Go: 2009, Compiled, Functional Language -

Copyright © 2019 R.M. Laurie Copyright © 2019 R.M. Laurie

Copyright © 2019 R.M. Laurie

https://youtu.be/liIlW-ovx0Y

Slide Set 8 - Programming Introduction

Scratch Programming Environment

“ Purely graphical yet powerful https://scratch.mit.edu

+« A graphical programming environment based on
flowchart algorithm design concepts

« https://scratch.mit.edu/projects/327376223

Copyright © 2019 R.M. Laurie

“» Computer programming applies mathematics

« Variables are containers similar to mathematics
¢ Variables can contain strings of text (ASCII or Unicode)
¢ Variables can contain numbers
¢ Some variables are predefined in Scratch

¢ You can create more variables to store data
¢ Local variables in Scratch affect single sprite
¢ Global variables in Scratch affect all sprites

+*Operators process data
Arithmetic Functional Comparison Relational

aD =
ao - aD oo
aD D =3

« Computer programming creates a sequencing of
events using control structures
Sequential Control Structure (Top-Bottom)
Selection Control Structure (Branching)
=]

4 Decision making control
4 Tests an Assertion (T/F) to branch or not "'_‘.
¢ Assertion uses Relational and Logical Operators r—-';J

@ Repetition Control Structure (Looping) e

4 Loop back and repeats process execution =
4 Tests an Assertion (T/F) to loop again or exit loop r«%l

4 Assertion uses Relational and Logical Operators .

4 Counter controlled or Sentinel controlled loops .oy
4 Computers Never Get Bored o
» Best for iterative well structured processing - .
Spm—)

» Not well suited for creative problem solving

Copyright © 2019 R.M. Laurie

Copyright © 2019 R.M. Laurie

youtu.be/EtJUNC64MF8

Copyright © 2019 R.M. Laurie

https://scratch.mit.edu/projects/168922707/

https://scratch.mit.edu/
https://scratch.mit.edu/projects/327376223/
http://www.musicnotes.com/sheetmusic/mtd.asp?ppn=MN0040299
https://youtu.be/EtJUWC64MF8
https://scratch.mit.edu/projects/168922707/

Slide Set 8 - Programming Introduction

Implementing Program - Input/Output

«» Computer programs often require input data
to be processed into information for output

+ Scratch Input functions

I
]

Eﬂﬂ
é

Copyright © 2019 R.M. Laurie

“*Planning Phase

#®Write Program Specifications document
#Analysis of requirements of program
#®Program specifications description
¢Describe the goals of the program
4Describe appearance of input and output
++Design Phase
#Algorithm Design

#Mathematical Analysis and Algorithm
#Flow Chart to describe event sequencing

#Verify algorithm

4 Test with known data and Solve manually

Copyright © 2019 R.M. Laurie

++Create a program to convert Celsius
temperature to Fahrenheit temperature

<*Mathematical Description and test data

300

#Boiling point "

F =212 212

C =100 g 100
#Freezing point ° 2

F =32 -5o#740 j 50 100 150

C = 0 100 Degrees Celsius

F =(180/100) C + 32
y:mx+b =(9/5) C + 32
=1.8C + 32

Copyright © 2019 R.M. Laurie

Algorithm Design - Flowchart

« Flowcharts are an excellent way to plan the sequence
of operations needed for the program to run

i Common Flowchart Symbols
- Lnpuioupus,””
Display Introductlon

* Connector

Prompt and Input Process @
Celsius Temperatur

Convert to

Copyright © 2019 R.M. Laurie

Display both Celsius H
Temperature And :
Fahrenheit Temperatur H

https: scratch.mit.edu ‘r‘o'ects 168924493/

https://scratch.mit.edu/projects/168924403/

Slide Set 8 - Programming Introduction

Verify Algorithm

“»Testing with known data

Display Introduction,

#Boiling point

Froasing point
.Freezing pOint Celsius Temperature,
F = 32 = Convert to
#Collect Data
Display both Celsius
¢Bank thermometer Temperature And /
Fahrenheit Temperatur
¢Radio weather report ’
¢Internet

“*Solve manually by hand using calculator

Copyright © 2019 R.M. Laurie

“ Translate Algorithm into Code pesus

¢ Run to detect
syntax errors

+ Test Program
¢ Test with known data
¢ Detects program

logic errors
« Often requires
several iterations
¢ May require
re-evaluation
of design
specifications
and algorithms

Enhanced Temperature Converter

< Specifications
¢ Program prompts
for input units and
value then converts

and display “>
temperatures
Mathematical / Prompt / /F Phrom:t /
Algorithms Celsms ahrenhei
¢C>F Convert Convert
F=18C+32 Sl =
¢F>C _{_1 \—;—1
C= (F - 32)/1.8 Display Display
¢ Test Data: G OUELTS i
0°C = 32°F
100°C = 212°F
-12°C =10.4°F

Copyright © 2019 R.M. Laurie

Copyright © 2019 R.M. Laurie

Start

emperture? c=Celsius or

TempC to | TempF - €D /€D

say join TempF join &8 join Tempc K

https://scratch.mit.edu/projects/168954282/#player

C

Prompt Which

Te
C entered

¥

Prompt Prompt
Celsius Fahrenhei

Convert
CtoF

Convert
FtoC

Display
‘emperatur

Display
‘emperatur

Copyright © 2019 R.M. Laurie

https://scratch.mit.edu/projects/168954282/

Slide Set 8 - Programming Introduction

Enhanced Temperature Gonverter

Specifications

< Program
prompts for
input units
and value
then converts
and display
temperatures

< Mathematical
Algorithms

¢C>F
F=18C+32

¢«F>C
C=(F-32)1.8

Prompt Which
onversion

Prompt
Celsius

©®No o AL N

B . Display Display 14.
* gfg;D;Zt?F ‘emperature emperature/ | 15.
100°C = 212°F = T 16.
-40°C = -40°F 17

. elif sUnit

. # Temperature Convertor

Author: Robert Laurie

(‘Temperature Convertor’)
nput("Enter Unit (C/F): ")
‘c’or sUnit=="'C":

if sUni
sinp = input("Enter °C: ")
fCels = float(slnp)
fFahr = 1.8 * fCels + 32
print(fCels,”°C = ",fFahr,F’)
=="f" or sUnit == "F":

sinp = input("Enter °F: ")

fFahr = float(sInp)

fCels = (fFahr - 32)/1.8

print(fFahr,”F = ",fCels,°C’)
else:

print("You must enter F or C")

. print("Done™)

Copyrght©2018 R Laure I 21

Temperature Converter with Loop

What unit is your
input temperture?

set TempC to | Tempr - €D /€D

think EXSICIERR

c=Celsius or
f=Fahrenheit

Another
mperature
conversion? y orn

(v

o

https://scratch.mit .edu/projects‘168959348‘ -

Copyright © 2019 R.M. Laurie

Dice Roller Loop Example

Copyright © 2019

https://scratch.mit.edu/projects/168963386/

R.M. Laurie

~e
RoliCounters.
ice 100 times

Boow-wooneon

! ,

Copyright © 2019 R.M. Laurie

Loop Control Structures - for:

Dice Roller
Author: Robert Laurie
import random as rd, time as tm #Modules used
sInp = input("How many rolls? ")
nCnt=[0,0,0,0,0,0,0,0,0,0,0,0,0] #Roll counters list
nTimeStart = tm.time() #Execution timer start time
for nl in range(int(sinp)): #for loop structure
nSm = rd.randint(1,6) + rd.randint(1,6) #Roll 2 Dice
nCnt[nSm] = nCnt[nSm] + 1 #Increment list element

. print("Roll two dice"”, slnp,"times results")

. nScale = max(nCnt) // 15 # Scale bar graph ¢

. if nScale == 0: nScale =1

. print("Each ¢ represents”, nScale, "rolls”,\n'+'—"*35)
. for nl in range(2, 13, 1): #for loop structure

sBr = "¢"*(nCnt[nl]//nScale) # Create bar
print("Roll{:3d} ={:7d} {}".format(nl, nCnt[nl], sBr))

. nTime = (tm.time() - nTimeStart)*1000 # Runtime
. print('—™*35,"\nRun time = {:6.3f} mSec".format(nTime))

<+ Loops processing
+ Assertion (T/F) loop
back or exit loop

< Sentinel controlled
4 while :

< Counter controlled
& forin:
4 Roll dice in 16 lines

Assertion

Statements

Copyright © 2019 R.M. Laurie

https://scratch.mit.edu/projects/168959348/
https://scratch.mit.edu/projects/168963386/

