
Slide Set 8 - Programming Introduction

Copyright © 2019 R.M. Laurie 1

Copyright © 2019 R.M. Laurie 1

Software = Computer Programs
vProgram: Set of step-by-step

instructions that direct the computer to
do a task and produce correct.

vProgramming Language: Set of rules
that instructs the computer what
operations to perform.

vProgramming is Fun!
u Simpler than human language
u Usually about 50 keywords
u Automates structured tasks
u Very logical without emotions
u Computer becomes your slave

Copyright © 2019 R.M. Laurie 2

People = End Users & Programmers
vEnd User's = IFSM201, IFSM300

u Utilize computer resources and applications
vProgrammers = CMIS102 or CMST385

uAnalyze problem and create solution algorithm
uCode the solution algorithm into a specific

programming language
uVerify program works using known test data
u High demand career field with high pay

vUMUC coding courses
u Programming: CMIS102 àCMIS141àCMIS242
u Web Design:

IFSM201àCMST385àCMST386àCMST388

Copyright © 2019 R.M. Laurie 3

Programming Language Generations
v1st = Machine Language

u Actual bits that CPU processes
v2nd = Assembly Language

u Each assembly instruction corresponds to one
machine code instruction

u Requires an assembler to convert assembly source
code to machine code

v3rd = High-level Language
u Uses human words for keywords
u Abstract and general purpose
u Requires a compiler or interpreter to run
u Compiles for different CPU's

v4rd = Application Language
u SQL for databases Copyright © 2019 R.M. Laurie 4

First Generation: Machine Language
vLowest level programming

language because it represents
data and program instructions
as binary 0/1. Generally,
hexadecimal is used for human
interaction.

vAll programming languages
are eventually converted into
machine language.

vWill be run on only one type of
CPU

0000
• • •
D000 86
D001 12
D002 8B
D003 0C
D004 B7
D005 D1
D006 00
D007 BB
D008 D1
D009 10
D00A B7
D00B D1
D00C 01
• • •

FFFF

Slide Set 8 - Programming Introduction

Copyright © 2019 R.M. Laurie 2

Copyright © 2019 R.M. Laurie 5

MC6809 Simple 8-bit Computer
All Computer Systems contain minimally one CPU
(Central Processor Unit) and Memory that are
interconnected by the data, address, and control buses

Copyright © 2019 R.M. Laurie 6

LDA #$12
ADDA #$0C
STA $D100
ADDA $D110
STA $D101
ADDA #$1E
BCC $D019
LDA #$00
STA $D110
BRA $D007

SWI

Second Generation: Assembly Language

Address Instructions Data
D000 86 12
D002 8B 0C
D004 B7 D100
D007 BB D110
D00A B7 D101
D00D 8B 1E
D00F B7 D01B
D012 86 00
D014 B7 D110
D017 23 D007
D01A 3F

Assembly Language Program
Assembly Program is assembled to machine code by Assembler

Copyright © 2019 R.M. Laurie 7

3rd Generation: High-Level Language Python

1. # How many Macaws are needed to carry a coconut?
2. # Author: Robert Laurie
3. import math #Required to use math.ceil function
4. fCarryRatio = 1/3 #float Carry ratio is 1/3 of weight
5. nCoconutWt = 1450 #int Coconut weight = 1450 grams
6. nMacawWt = 900 #int Macaw bird weight = 900 grams
7. fCarryWt = nMacawWt * fCarryRatio #float Calculation
8. # help(math.ceil) can get info about a function
9. nMacawQty = math.ceil(nCoconutWt/fCarryWt)
10. # Display results with description string
11. print(nMacawQty, "macaws needed to carry one coconut")

Line # Source code written in Python syntax

https://youtu.be/liIlW-ovx0Y

Copyright © 2019 R.M. Laurie 8

Historical Development of HLL
v FORTRAN: 1957, Engineering and science applications.
v COBOL: 1959, Developed for business applications.
v BASIC: 1965, Interpreted language, Easy to program with DOS.

v C: 1975, Procedural Oriented (verbs), efficient structure and fast
v C++: 1985, Added several keywords to C so that could be used

as an Object Oriented Programming language, OOP focuses on
object (nouns) rather then tasks (verbs).

v Java: 1993, Pseudo-Compiled language generates bytecode
which runs on any Java Virtual Machine to achieve OS and CPU
Independence; Developed as a simplified OOP language that
supports Networks, Security, and Multithreaded for multitasking.

v JavaScript: 1995, Interpreted Language, utilizes JS interpreter
in web browser; Object-based; Similar syntax to Java and C++.

v Python: 2005, Interpreted, Procedural or OOP, Good 4 beginners.
v Ruby: 2007, Interpreted Language, Purely OOP
v Go: 2009, Compiled, Functional Language

https://youtu.be/liIlW-ovx0Y

Slide Set 8 - Programming Introduction

Copyright © 2019 R.M. Laurie 3

Scratch Programming Environment
v Purely graphical yet powerful https://scratch.mit.edu
v A graphical programming environment based on

flowchart algorithm design concepts
v https://scratch.mit.edu/projects/327376223

Copyright © 2019 R.M. Laurie 9 Copyright © 2019 R.M. Laurie 10

Implementing Program - Mathematics
vComputer programming applies mathematics
vVariables are containers similar to mathematics

u Variables can contain strings of text (ASCII or Unicode)
u Variables can contain numbers
u Some variables are predefined in Scratch
u You can create more variables to store data

tLocal variables in Scratch affect single sprite
tGlobal variables in Scratch affect all sprites

vOperators process data
Arithmetic Functional Comparison Relational

Implementing Program – Sequencing
vComputer programming creates a sequencing of

events using control structures
u Sequential Control Structure (Top-Bottom)
u Selection Control Structure (Branching)

tDecision making control
tTests an Assertion (T/F) to branch or not
tAssertion uses Relational and Logical Operators

u Repetition Control Structure (Looping)
tLoop back and repeats process execution
tTests an Assertion (T/F) to loop again or exit loop
tAssertion uses Relational and Logical Operators
tCounter controlled or Sentinel controlled loops
tComputers Never Get Bored

Best for iterative well structured processing
Not well suited for creative problem solving

Copyright © 2019 R.M. Laurie 11

Music and Motion are Sequential Processes

www.musicnotes.com/sheetmusic/mtd.asp?ppn=MN0040299

youtu.be/EtJUWC64MF8

https://scratch.mit.edu/projects/168922707/
Copyright © 2019 R.M. Laurie 12

https://scratch.mit.edu/
https://scratch.mit.edu/projects/327376223/
http://www.musicnotes.com/sheetmusic/mtd.asp?ppn=MN0040299
https://youtu.be/EtJUWC64MF8
https://scratch.mit.edu/projects/168922707/

Slide Set 8 - Programming Introduction

Copyright © 2019 R.M. Laurie 4

Copyright © 2019 R.M. Laurie 13

Implementing Program – Input/Output
vComputer programs often require input data

to be processed into information for output
vScratch Input functions

vScratch Output functions

Copyright © 2019 R.M. Laurie 14

Planning Phase
vPlanning Phase

uWrite Program Specifications document
uAnalysis of requirements of program
uProgram specifications description

tDescribe the goals of the program
tDescribe appearance of input and output

vDesign Phase
uAlgorithm Design

tMathematical Analysis and Algorithm
tFlow Chart to describe event sequencing

uVerify algorithm
tTest with known data and Solve manually

Copyright © 2019 R.M. Laurie 15

Algorithm Design - Mathematical
vCreate a program to convert Celsius

temperature to Fahrenheit temperature
vMathematical Description and test data

uBoiling point
F =212
C = 100

uFreezing point
F = 32
C = 0

y = mx + b
F = (180 / 100) C + 32

= (9/5) C + 32
= 1.8 C + 32 Copyright © 2019 R.M. Laurie 16

Algorithm Design - Flowchart
v Flowcharts are an excellent way to plan the sequence

of operations needed for the program to run

Start

End

Prompt and Input
Celsius Temperature

Display Introduction

Convert to
Fahrenheit Temperature

Display both Celsius
Temperature And

Fahrenheit Temperature

Terminator Input/Output

Process

Connector

Common Flowchart Symbols

Selection

Scratch Program

https://scratch.mit.edu/projects/168924403/

https://scratch.mit.edu/projects/168924403/

Slide Set 8 - Programming Introduction

Copyright © 2019 R.M. Laurie 5

Copyright © 2019 R.M. Laurie 17

Verify Algorithm
vTesting with known data

uBoiling point
F =212 C = 100

uFreezing point
F = 32 C = 0

uCollect Data
tBank thermometer
tRadio weather report
tInternet

vSolve manually by hand using calculator

Start

End

Prompt and Input
Celsius Temperature

Display Introduction

Convert to
Fahrenheit Temperature

Display both Celsius
Temperature And

Fahrenheit Temperature

Copyright © 2019 R.M. Laurie 18

Implementation Phase
vTranslate Algorithm into Code

u Run to detect
syntax errors

vTest Program
u Test with known data
u Detects program

logic errors
u Often requires

several iterations
u May require

re-evaluation
of design
specifications
and algorithms

GOAL
THINKING

CODE

REVISE
REVISE

REVISE
DEBUG

DEBUG

DEBUG

TEST

CODE

START

Copyright © 2015 R.M. Laurie 18

Scratch Program

Copyright © 2019 R.M. Laurie 19

Enhanced Temperature Converter
vSpecifications

u Program prompts
for input units and
value then converts
and display
temperatures

u Mathematical
Algorithms
tC à F

F = 1.8 C + 32
tF à C

C = (F – 32)/1.8
u Test Data:

0°C = 32°F
100°C = 212°F
-12°C = 10.4°F

Start
Prompt Which

Conversion

C entered?

Prompt
Celsius

Prompt
Fahrenheit

Convert
C to F

Convert
F to C

Display
Temperature

xC = xF

Display
Temperature

xF = xC

End

True False

Copyright © 2019 R.M. Laurie 20

Enhanced Temperature Converter
Start

Prompt Which
Conversion

C entered?

Prompt
Celsius

Prompt
Fahrenheit

Convert
C to F

Convert
F to C

Display
Temperature

xC = xF

Display
Temperature

xF = xC

End

True False

https://scratch.mit.edu/projects/168954282/#player

https://scratch.mit.edu/projects/168954282/

Slide Set 8 - Programming Introduction

Copyright © 2019 R.M. Laurie 6

Copyright © 2019 R.M. Laurie 21

Enhanced Temperature Converter
Specifications
v Program

prompts for
input units
and value
then converts
and display
temperatures

v Mathematical
Algorithms
u C à F

F = 1.8 C + 32
u F à C

C = (F – 32)/1.8
v Test Data:

0°C = 32°F
100°C = 212°F
-40°C = -40°F

Start
Prompt Which

Conversion

C entered?

Prompt
Celsius

Prompt
Fahrenheit

Convert
C to F

Convert
F to C

Display
Temperature

xC = xF

Display
Temperature

xF = xC

End

True False

1. # Temperature Convertor
2. # Author: Robert Laurie
3. print('Temperature Convertor')
4. sUnit = input("Enter Unit (C/F): ")
5. if sUnit == 'c' or sUnit == 'C':
6. sInp = input("Enter °C: ")
7. fCels = float(sInp)
8. fFahr = 1.8 * fCels + 32
9. print(fCels,'°C = ',fFahr,'°F')
10. elif sUnit == 'f' or sUnit == 'F':
11. sInp = input("Enter °F: ")
12. fFahr = float(sInp)
13. fCels = (fFahr - 32)/1.8
14. print(fFahr,'°F = ',fCels,'°C')
15. else:
16. print("You must enter F or C")
17. print("Done")

Copyright © 2019 R.M. Laurie 22

Temperature Converter with Loop

https://scratch.mit.edu/projects/168959348/

Dice Roller Loop Example

Copyright © 2019 R.M. Laurie 23

https://scratch.mit.edu/projects/168963386/

Loop Control Structures - for:
v Loops processing

u Assertion (T/F) loop
back or exit loop

v Sentinel controlled
u while :

v Counter controlled
u for in :
u Roll dice in 16 lines

Copyright © 2019 R.M. Laurie 24

1. # Dice Roller
2. # Author: Robert Laurie
3. import random as rd, time as tm #Modules used
4. sInp = input("How many rolls? ")
5. nCnt=[0,0,0,0,0,0,0,0,0,0,0,0,0] #Roll counters list
6. nTimeStart = tm.time() #Execution timer start time
7. for nI in range(int(sInp)): #for loop structure
8. nSm = rd.randint(1,6) + rd.randint(1,6) #Roll 2 Dice
9. nCnt[nSm] = nCnt[nSm] + 1 #Increment list element
10. print("Roll two dice", sInp,"times results")
11. nScale = max(nCnt) // 15 # Scale bar graph ♦
12. if nScale == 0: nScale = 1
13. print("Each ♦ represents", nScale, "rolls",'\n'+'─'*35)
14. for nI in range(2, 13, 1): #for loop structure
15. sBr = '♦'*(nCnt[nI]//nScale) # Create bar
16. print("Roll{:3d} ={:7d} {}".format(nI, nCnt[nI], sBr))
17. nTime = (tm.time() - nTimeStart)*1000 # Runtime
18. print('─'*35,"\nRun time = {:6.3f} mSec".format(nTime))

Assertion
T/F

Loop
Statements

update counter

True

False

Initialize Counter

https://scratch.mit.edu/projects/168959348/
https://scratch.mit.edu/projects/168963386/

