

Build v. Buy

A Decision Paradigm
For Information Technology

Applications

By Kenneth S. Ledeen,
Chairman and CEO, Nevo Technologies, Inc.

www.nevo.com

Make v. Buy: A Decision Paradigm • by Kenneth Ledeen

 Page 1

ew Information Technology topics have
received the sustained interest visited

upon the question of whether organizations
should acquire commercial off-the-shelf (COTS)
software packages or build from scratch. No
general answer exists to this complex question,
but a solid understanding of the differences
between the two, and a structured approach,
can remove both the uncertainty and the risk
from this critical decision.

Not only have opinions varied, but also the
balance of thought has tended to move from
side to side, sometimes favoring one approach,
then the other as technology advances. The
emergence of highly configurable, sophisticated
applications in such areas as ERP, Human
Resources, finance and administration, CAD,
CRM, Business Intelligence, and Data
Warehousing fueled the popularity of packaged
solutions.

Recently, the Gartner Groupi reported on a
growing trend towards “build” citing several
drivers for this trend: the impact of new
technologies and the availability of skilled
technologists, the recognition that many
packaged solutions are “too cumbersome,
bloated and expensive,” the need to “adapt to
unique business models and the idiosyncrasies
of their own organizations.”

For many applications the line between build
and buy has become blurred. Custom
applications are often created by integrating
standard components, and packaged
applications often require extensive
configuration and integration as well. Building
custom apps today is more a process of
assembly than construction. The distinction is
often a matter of degree.

This paper presents a structured decision
making paradigm that takes into account both
the nature of the organization, the processes
under consideration, the technology
environment, and the state of packaged
solutions and their vendors. It yields sufficient
information to allow a selection team to make
an informed decision.

We will present a set of decision criteria,
discuss the inherent differences between
packaged solutions and custom ones, and
finally, outline a structured decision process.

I. DECISION CRITERIA
any build v. buy decision paradigms
share consideration of these important

factors:

Core vs. Context
Borrowing the terminology from Geoffrey
Mooreii, the first criterion is the strategic
significance of the application. Applications that
do not impact the unique nature of the business
rarely warrant the attention that custom
solutions demand. Few organizations would
consider custom software solutions for general
ledger, HR and payroll, tax preparation, or
supply chain management. But for H&R Block,
tax preparation is core to the company’s
strategic advantage, just as for WalMart, supply
chain management drives their success.

Core activities are those that contribute directly
to the organizations differentiation and value
creation. Context is everything else.

It is in Core areas that organizations gain
strategic advantage, and where information
systems must conform to business processes,
not the reverse.

The chart below, borrowed from Geoffrey
Moore, speaks to where organizations gain the
greatest leverage and strategic advantage
through investment of intellectual and financial
resources. Mission critical, core activities are
the highest priority and deserve the most
attention. When assessing build vs., buy
decision, know whether the particular activity is
core or context will suggest whether it is

F
M

The Criteria

• Core vs. Context
• Coverage
• Direction
• TCO
• Scale
• Timing
• Standards

Make v. Buy: A Decision Paradigm • by Kenneth Ledeen

 Page 2

appropriate to consider modifying business
practices to meet the strictures of a commercial
package, or whether the best needs to maintain
direct control.

Coverage
Coverage assesses how close the match is
between what the business requires and what
the packaged solution provides.

The traditional rule of thumb is that packaged
solutions must meet a minimum of 80% of the
required functionality. Unfortunately, this is an
oversimplification.

It is not sufficient to determine only if a package
covers all the requirements. It is equally
important to determine if the package provides
capabilities that are outside the requirements.
Every feature, every function, every capability
represents additional cost and complexity, and
those inevitably translate into future costs and
complications. Just as it is unwise to consider a
package unless it meets 80% of the known
needs, similarly, it is unwise to consider one in
which the known requirements represent less
than 80% of the package’s capabilities.

A common trap is evaluation COTS-based
solutions solely on the features they offer. This
feature-checklist approach offers a simple
mechanism for comparisons among packaged
alternatives, but misses the key dimension of
business process fit. Feature lists rarely
capture the dynamic characteristic of method
and process.

Requirements must be compared from the
perspective of business process, not
exclusively from features and functions. One of
the most common sources of problems down
the road is a reliance on feature-laden technical
specifications.

All too often packages will meet the functional
requirements, but fail to provide a solution

consistent with the organizations business
processes. Or, vice-versa. A potential solution
is ruled out because it doesn’t match the
exhaustive feature list, but would have been
and excellent for the business process.

Direction
In assessing packaged solution, the concern
imust be not only how well current requirements
are covered, but also how flexible,
maintainable, and extensible the application will
be throughout the intended life of the software.
This is particularly important for applications
that are intended to have a long useful life since
many of their, requirements have yet to be
imagined, let alone defined. When we consider
direction we must take into consideration how
much control the organization will have over the
crafting and addition of desirable, but as yet
unknown, new features.

The consideration of direction applies equally to
application functions as well as to platform
technologies. Both must be considered
carefully. Architecture, technology, integration
methods, all influence the long term direction
and evolution of the package. They are key
indicators where the package will be, how long
it is likely to be enhanced, and consequently,
how likely it is that the solution will continue to
be a good fit in the future.

Total Cost of Ownership (TCO)
TCO includes not only the cost of acquisition,
configuration, and customization, but also the
ongoing support, maintenance, and evolution of
the application. It is quite common for lifetime
costs to dwarf acquisition costs. Perhaps the
most important determination in the calculation
of TCO is an estimate of the anticipated
economic life of the application. TCO must take
into account the fixed costs associated with
mastering the underlying structure and
technology of a packaged solution as well.

Custom solutions required continued availability
of development resources, either in-house, or
through partners, to respond to changing
requirements. Similarly, packaged solutions
require resources to test, validate, integrate,
and support new releases from the vendor.
The degree of effort is highly dependent on the
nature of the application itself.

Make v. Buy: A Decision Paradigm • by Kenneth Ledeen

 Page 3

Typically, packaged solutions have much higher
volatility – that is they tend to change more
often and in more dramatic ways – and a much
shorter economic life.

Both of these factors are discussed in more
detail below.

Buying a solution that has hosts of capabilities
that you don’t need is a bad idea. One way or
another, you end up paying for the complexity
in terms of training, integration, configuration,
maintenance, support, or any of the myriad
factors that influence long-term costs. Beyond
the pure economic impact, the vendor will be
revising, enhancing, and expanding all of those
additional features as well. If the package does
so much more than you want and need, then it
is likely that it is meant to serve a different
audience, and your requirements stand a high
probability of diverging over time.

Scale
The larger the scale of the application, the more
important it is that it represent core business
functions. Conversely, many large, integrated
ERP solutions have such a large fixed support
cost that it is not reasonable or appropriate to
consider implementing a small subset of the
complete suite.

Scale becomes an important factor in
measuring and ultimately mitigating risk for the
project. The decision process must yield both a
comparison of costs and risks in order for
informed decisions to be made.

Timing
Conventional wisdom held that implementing a
packaged solution was faster than custom
development. As one might expect, this is an
oversimplification. The process of installing,
configuring, customizing, and completing data
conversion for packaged solutions routinely
involves tasks that are as complex and
extensive as custom development, with far less
flexibility in phasing and timing.

COTS packages may offer greater predictability
with respect to implementation time, but that is
largely a reflection of the restrictions they
impose on capabilities and flexibility. The
greatest risk to timing in custom development is
the difficulty organizations have in control the

requirements process and allowing feature
creep to occur.

The greater the degree to which the
organization can accept a pre-defined business
process, the simpler the implementation will be.
If a package can be used “as is” without any
adaptation to the organization’s business
processes and practices, then it will have a
substantial advantage over a custom
implementation. As soon as “configuration” is
required, or business process modification is
considered, packaged solutions cease to have
any meaningful time advantage. They merely
trade one form of activity for another.

Standards
Standards may be the most important criterion
of all.

COTS vendors market the notion that the cost
of software development can be spread across
that a large user community, thereby reducing
the cost to each individual customer.

For this promise to be true, there needs to be
some external force that ensures consistency of
at least a large portion of the requirements.
Common examples of such forces are
government standards (tax laws, accounting
regulations), nature (software to do simulation,
for example), broad industry standards (HTML
standards allow commercial browsers to exist,
ISO standards for mechanical drafting), or
powerful industry groups (FIX for financial
transfers, EDI, AIA standards for architecture,
and others).

Standards may also arise directly from the
success of a particular package in areas where
organizations are highly likely to see the
function as “context” not “core. Office
applications (word processing, spreadsheet,
email clients) are good examples. Tools and
components also fall into that category. Few
organizations would think to develop their own
database technology, messaging middleware,
or operating system.

In the absence of a strong external force
defining consistent content, it is nearly certain
that COTS solutions will diverge over time (see
“Direction” above); that the feature-function
evolution will cease to be a good fit (see
“Coverage”); that the TCO will grow as

Make v. Buy: A Decision Paradigm • by Kenneth Ledeen

 Page 4

organizations cope with a mismatch between
the package and the business requirements.
Worst of all, the business users may discover
that they cannot ensure that evolving software
will match their business process requirements
– particularly for functions that are “core.”

II. DIFFERENCES
hile the decision help us evaluate fit, we
also need to consider he inherent

differences between packaged and custom
solutions.

Economic Life
Custom solutions typically have a substantially
longer Economic Life than Packaged COTS
Solutions1. Two factors contribute to a
difference that can be ask great as 3X: the
complexity that comes from diverse
requirements, and the pressure to use the latest
technologies.

First - complexity. Software has the unfortunate
characteristic that the more complex it
becomes, the harder it is to extend, modify, or
support. COTS solutions become the victim of
their own success: more customers means
greater diversity of requirements. The
complexity needed to support that diversity
shortens the time over which they can meet
evolving needs because it becomes to difficult
to enhance. It is not uncommon for packaged
applications to have a data model with many
times the number of tables of custom solutions.

Second - technology. New customers of
packaged solutions demand that those
solutions be implemented using the latest and
greatest technologies. This is not at all

1 COTS-based System and Make vs. Buy Decisions: the
Emerging Picture,” Abts, Chris, Center for Software
Engineering, University of Southern California, Position
Paper for the International Workshop on Reuse
Economics, Austin, Texas, 4.16.2002

unreasonable, given that new customers are
looking for new, advanced solutions. However,
technology platforms are utilitarian for much
longer than they are popular. No organization
would choose to acquire a COBOL-based
application today, yet large systems in many
industries continue to function perfectly well
with them. The result is pressure on COTS
vendors to migrate to newer technologies faster
than the underlying system requires. If they
don’t, they will become uncompetitive. Thus, it
is the requirements of the “next” customer that
drives the actions of package vendors, rather
than the needs of the user base.

The combination of increased complexity and
technology migration results in an economic life
for packaged solutions that is one half to on
third of the expected life of custom solutions. It
is not at all uncommon to encounter custom
solutions that remain highly productive ten,
fifteen, or twenty years after their
implementation.

Volatility
By “volatility” we mean the frequency and
complexity of new releases. Greater volatility
means increased support and maintenance
costs, since a common characteristic of
packaged solutions is that customers must test,
integrate, and install each release, whether it
contains desired enhancements or not.

Each new release presents substantial risk to
the stability and availability of the system to
users. The burden of validating content, testing

Custom solutions, by contrast, are only
modified in response to user requests or
changes in the client environment.

Business Process
While it is common for packaged solution
vendors to claim complete flexibility in
configuring their solution to meet existing
business process this is rarely the case. Most
often client organizations are urged to modify
their business practices to conform to the range
of choices that the package offers. This
constraint is essential lest the package grow to
be unmanageably complex. In practice, this is
often not a problem since one of the motivating
factors behind the choice of a packaged

W

The Differences
1. Economic Life
2. Volatility
3. Business Process
4. Timing
5. Control

Make v. Buy: A Decision Paradigm • by Kenneth Ledeen

 Page 5

solution is the desire to re-engineer business
processes.

3. DECISION PROCESS
he Build v. Buy decision paradigm we
advocate seeks to understand the
business needs, and then eliminate

candidate solutions that fail to meet those
needs. The remaining choices, all considered
“acceptable,” are then compared from the
balanced perspectives of cost and risk. To
accomplish this, we use a six-step process:

Assess Organizational Bias
We start here because all organizations have
an innate bias towards COTS or custom
solutions. That predisposition should be
acknowledged, and the reasons for it
understood so that they can be addressed
directly. The position may be well founded, or
based on past experiences that are no long
directly application.

If organizational bias is not understood and
made explicit, the assessment team can waste
substantial time and effort and not provide the
information needed to reach a reasoned
conclusion

Determine Core vs. Context
It is quite common for organizations to lack
clarity in this area, or to confuse traditional
business processes with strategically significant
ones. Since the choice of a COTS solution will
almost certainly result in the transition from
current processes to the ones the package
supports - at least at a detail level – it is

extremely important to gain insight and
concurrence on the strategic significance of the
business processes the application will support.

There is ample evidence to lead us to a COTS
solution for context activities, and a custom
solution for core, differentiating activities.

Document Requirements
We strongly advocate the use of scenario-
based requirements, supplemented by
functional requirements where appropriate.
This approach (called Use Cases in UML)
ensures that the chosen solution will meet the
business objectives. Requirements that are
limited to a Functional Specification miss all of
the dynamic aspects of system usage.

At this stage of the process, it is useful to
approach the process as if you were going to
build the whole thing, documenting what you
want and need in a way that would let a
development team understand what they are to
build. Avoid simply prioritizing features and
functions, and stick to scenario-based
requirements supplemented by high-level, non-
functional needs (such as security, availability,
access).

Review Packages for Fit
This is where the bulk of the work gets done.
Concentrate on both coverage and direction
since you need to be sure that the package will
meet not just your current needs, but your
future needs as well.

When assessing coverage, consider that the
80% rule should apply in both directions – both
what is in, and what is out. A package is a bad
fit if either

• It doesn’t meet 80% of your needs, or

• Your needs represent less than 80% of
what the package does.

Finally, fit should be measured in the non-
functional domains as well. The underlying
technology, support practices, frequency of
release and upgrades, integration tools and
capabilities, are among the characteristics
worthy of assessment.

T

The Process
1. Assess Organizational Bias
2. Determine Core vs. Context
3. Document scenario-based

requirements
4. Review available packages for fit.
5. Develop TCO estimates for all best-fit

alternatives
6. Prepare Risk/Mitigation Matrix

Make v. Buy: A Decision Paradigm • by Kenneth Ledeen

 Page 6

TCO Estimates
The economic phase of the determination
requires a solid understanding of the total cost
of ownership, not simply the cost to acquire,
configure, and implement.

TCO calculation needs to take into account the
startup costs, as well as the economic life and
volatility of the package. How far through its life
cycle is it? How often are major and minor
releases issued? Is it mandatory to test,
integrate, install, and support each of these
releases?

It is common for packaged solution to have very
large fixed support costs, many of which are not
discussed during the sales cycle, and not at all
visible until far into the implementation phase.

Packages that involve substantial configuration,
for example, may require elaborate and costly
efforts to maintain control over the configuration
as it evolves overtime.

The uncertainty that is often associated with the
acquisition cost of a custom solution can be
overshadowed by the uncertainty and
magnitude of the lifetime costs of a packaged
solution.

Risk and Mitigation
All projects involve risk, some less and some
more. Each of the “acceptable” alternatives
should be the object of a detailed risk and
mitigation review. You may discover, for
example, that the “build” alternative can be
broken into smaller phases that will both reduce
the risk of a big bang implementation, and give
the organization time to adapt to the new, more
efficient business processes.

rganizations face the build v. buy
dilemma every time they turn to
information technology to gain

efficiency, improve productivity, or improve their
strategic advantage.

Understanding the differences between the two
approaches, and embracing a structured,
disciplined decision-making process can yield
very large benefits.

.

O

Make v. Buy: A Decision Paradigm • by Kenneth Ledeen

 Page 1

References

i A Build Mentality Is Re-emerging in Business Applications, Gartner Groups, Strategic Planning, SPA-20-
7537, S. Nelson, Research Note 21 August 2003

ii Living on the Fault Line: Managing for Shareholder Value in Any Economy, Moore, Geoffrey, HarperCollins, 2002

