

Expressing Rational Numbers as Decimals			
Express each ration a. $\frac{5}{8}$ $8\frac{0.625}{15,000}$	b. $\frac{7}{11}$ $\frac{0.63\overline{63}}{11}$		
$\frac{48}{20}$	66 Notice the digits 63 40 repeat over and over 40 indefinitely. This is called 33 a repeating decimal. 70		
40 <u>40</u> 0 Notice the decimal stops w remainder = 0. This is a terminating decimal	66 40 33 3 ith 70 : :		
terminating decimal.	Copyright © 2015 R. Laurie		

Expressing Decimals as a Fraction

Express terminating decimal as a quotient of integers:	
a. 0.7 b. 0.49 c. 0.048	
Solution:	
a. $0.7 = \frac{7}{10}$ because the 7 is in the tenths position.	
b. $0.49 = \frac{49}{100}$ because the digit on the right, 9, is in the hundredths position.	
c. $0.048 = \frac{48}{1000} = \frac{48 \div 8}{1000 \div 8} = \frac{6}{125}$ because the digit on the right, 8, is thousandths position and can be reduced to lowest terms	
Copyright © 2015 R. Laurie	

Add and Subtract Rational Numbers

The sum or difference of two rational numbers with <u>identical denominators</u> is the sum or difference of numerators over common denominator.

Add and Subtract Rational Numbers The sum or difference of two rational numbers with different denominators, we use the Least Common Multiple of their denominators to rewrite the rational numbers. * The Least Common Multiple of their denominators is called the Least Common Denominator or LCD. $\frac{3}{4} + \frac{1}{6} = \frac{3}{4} \left(\frac{3}{3} + \frac{1}{6} \right) \left(\frac{2}{2} \right)$ We multiply the first rational number by 3/3 and the second one by 2/2 to obtain 12 in the denominator for each number. $= \underbrace{\begin{array}{c} 9\\ 12 \end{array}}_{\text{(12)}} + \underbrace{\begin{array}{c} 2\\ 12 \end{array}}_{\text{Notice, we have 12 in the}}$ Add numerators and put this sum over the least common denominator. Copyright © 2015 R. Laurie 12

Square Roots

- The principal square root of a nonnegative number *n*, written \sqrt{n} , is the positive number that when multiplied by itself gives n.
- ***** For example, $\sqrt{36}=6$ because $6 \cdot 6 = 36$.
- ***** Notice that $\sqrt{36}$ is a rational number because 6 is a terminating decimal.
- * Not all square roots are irrational.
- * For example, here are a few perfect squares:

♦ 0 = 0 ²	$\sqrt{0}=0$	
◆ 1 = 1 ²	$\sqrt{1}=1$	he square root of a
♦ 4 = 2 ²	$\sqrt{4}=2$	erfect square is a

is a mber $\sqrt{9=3}$

Copyright © 2015 R. Laurie

