1.5 Exponential and Scientific Notation

- 1. Number Classification
- 2. Properties of Real Numbers
- 3. Use properties of exponents
- 4. Convert from scientific to decimal notation
- 5. Convert from decimal to scientific notation
- 6. Perform computations using scientific notation
- 7. Solve applied problems using scientific notation

Copyright © 2015 R.M. Laurie 1

	Properties of the Real Numbers		
	Property	Example	
1.	Commutative Property of Addition a + b = b + a	2 + 3 = 3 + 2	
2.	Commutative Property of Multiplication $a \cdot b = b \cdot a$	$2 \cdot (3) = 3 \cdot (2)$	
3.	Associative Property of Addition a + (b + c) = (a + b) + c	2 + (3 + 4) = (2 + 3) + 4	
4.	Associative Property of Multiplication $a \cdot (b \cdot c) = (a \cdot b) \cdot c$	$2 \cdot (3 \cdot 4) = (2 \cdot 3) \cdot 4$	
5.	Distributive Property $a \cdot (b + c) = a \cdot b + a \cdot c$	$2 \cdot (3+4) = 2 \cdot 3 + 2 \cdot 4$	
6.	Additive Identity Property $a + 0 = a$	3 + 0 = 3	
7.	Multiplicative Identity Property $a \cdot 1 = a$	$3 \cdot 1 = 3$	
8.	Multiplicative Inverse Property $a \cdot \left(\frac{1}{a}\right) = 1$ Note: <i>a</i> cannot = 0	$3 \cdot \left(\frac{1}{3}\right) = 1$	

Property	Meaning	Examples
Zero Exponent Rule bº = 1	If <i>b</i> is any real number other than 0 and exponent is zero the result is 1	7° = 1 (-5)° = 1 -5° = -1
The Product Rule $b^m \cdot b^n = b^{m+n}$	When multiplying exponential expressions with the same base, add the exponents.	$9^6 \cdot 9^{12} = 9^{6+12}$ = 9^{18}
The Power Rule (b ^m) ⁿ = b ^{mn}	When an exponential expression is raised to a power, multiply the exponents.	$(3^4)^5 = 3^{4\cdot 5} = 3^{20}$ $(5^3)^8 = 5^{3\cdot 8} = 5^{24}$
The Quotient Rule $\frac{b^m}{b^n} = b^{m-n}$	When dividing exponential expressions with the same base, subtract the exponent in the denominator from the exponent in the numerator.	$\frac{5^{12}}{5^4} = 5^{12-4} = 5^8$ $\frac{9^{40}}{9^5} = 9^{40-5} = 9^{32}$

Properties of Exponents

The Set of Real Numbers

Copyright © 2015 R.M. Laurie

- A positive exponent tells how many zeros follow the 1. For example, 10⁹, is a 1 followed by 9 zeros: 1,000,000,000.
 A negative exponent tells how many places there are to the right of the decimal point.
- there are to the right of the decimal point. For example, 10-9 has nine places to the right of the decimal point.

Copyright © 2015 R.M. Laurie

The National Debt Problem of the USA

As of October 10, 2015, the national debt was \$18.4 trillion, or 1.84×10^{13} dollars. At that time, the U.S. population was approximately 321,900,000, or 3.219×10^8 . If the national debt was evenly divided among every individual in the United States, how much would each citizen have to pay?

