4. Quadratic Equations
5. Multiply binomials using the FOIL method.
6. Factor trinomials.
7. Solve quadratic equations by factoring.
8. Solve quadratic equations using the quadratic formula.
9. Solve problems modeled by quadratic equations.

## 4.1: Multiplying Two Binomials

* Binomial: An algebraic expression containing two terms in which each exponent that appears on the variable is a whole number.
- Examples: $x+3, x+4,3 x+4,5 x-3$
* Binomial Multiplication FOIL Method

Example: FOIL Multiplication Method
Multiply: $(x+3)(x+4)$
Solution:
F: First terms $=x \cdot x=x^{2}$
O: Outside terms $=x \cdot 4=4 x$
I: Inside terms $=3 \cdot x=3 x$

L: Last terms $=3 \cdot 4=12$$\quad$\begin{tabular}{r}

| $(x+3)(x+4)=x^{2}+4 x+3 x+12$ |
| ---: |
| $=x^{2}+7 x+12$ combine like terms | <br>

Standard Trinomial Form: $a x^{2}+b x+c$
\end{tabular}

## 4.2: Factoring Trinomial where a = 1

*Trinomial: A simplified algebraic expression that contains three terms in which all variables have whole number exponents.

Standard Trinomial Form: $a x^{2}+b x+c$
*We can use the FOIL method to multiply two binomials to obtain a trinomial:

$$
\begin{aligned}
& \text { Factored Form F } \quad \text { ○ } \quad \text { L } \quad \text { Trinomial Form } \\
& (x-3)(x+7)=x^{2}+7 x-\mathbf{3 x}-\mathbf{2 1}=x^{2}+\mathbf{4 x}-\mathbf{2 1}
\end{aligned}
$$

*Factoring an algebraic expression containing the sum or difference of terms means finding an equivalent expression that is a product.

Copyright © 2016 R. Laurie 5

## Strategy for Factoring $\mathbf{x}^{2}+\mathbf{b x}+\mathbf{c}$

Factor: $x^{2}+6 x+8$
Step 1: Factor out anything common to all factors (nothing).
Step 2: Enter $x$ as the first term of each factor.

$$
x^{2}+6 x+8=(x \quad)(x)
$$

Step 3: List all pairs of factors of constant $c$.
If $c$ is positive then factors have same signs.
If $\boldsymbol{c}$ is negative then factors have opposite signs.
Factors of 8 are: 1,8 -1, -8 2,4 -2,-4
Step 4: Try various combinations of these $c$ factors. The correct factorization is the one where the sum of factors is equal to $b$ term.

$$
(x+\underline{2})(x+\underline{4})
$$

$$
2+4=6
$$

Step 5: Check your factoring by multiplying the binomials to determine if they factor correctly to be the original trinomial.
$(x+2)(x+4)=x^{2}+4 x+2 x+8=x^{2}+6 x+8$
Copyigh © 2016 R. Laurie ${ }_{6}$

## Factoring ax² + bx $+\mathbf{c}$ using AC Method

Factor: $3 x^{2}-20 x+28$

$$
a x^{2}+b x+c
$$

Step 1: Factor out anything common to all terms (nothing).
Step 2: Determine product of ac terms which will be factored in step 3.

$$
3 x^{2}-20 x+28
$$

$a \cdot c=3 \cdot 28=84$
Step 3: List all pairs of factors of product ac.
If $a c$ is positive then factors have same signs. $b$ determines sign If $a c$ is negative then factors have opposite signs.

$$
\text { Factors of } 84 \text { are: }-1,-84 \quad-4,-21 \quad-6,-14 \quad-7,-12
$$

Step 4: Try various combinations of these $c$ factors. The correct
factorization is the one where the sum of factors is equal to $b$ term.
Step 5: Split the middle term into two terms. $\quad-6-14=-20$
$3 x^{2}-20 x+28=3 x^{2}-\overline{6 x-14 x}+28$
Step 6: Determine if first terms have something in common and factor out

$$
3 x(x-2)-14 x+28=3 x(x-2)-14(x-2)=(3 x-14)(x-2)
$$

Step 7: Try factoring out same binomial from last two terms
Step 8: Apply Distributive law to create product of two binomials

| Factor the Trinomial Expressions |  |
| :---: | :---: |
| $3 x^{2}-16 x+5$ | Prob 4.2.39 |
| $6 x^{2}+x-1$ | Prob 4.2.47 |
| $4 x^{2}-4 x-15$ | Prob 4.2.51 |
| $\mathbf{1 2 ~} \boldsymbol{x}^{3}+\mathbf{6} \boldsymbol{x}^{2}-\mathbf{1 8 x}$ | Prob 4.2.1 |
|  |  |

## Example: Solving Quadratic Equation by Factoring

```
Solve: }\mp@subsup{x}{}{2}-2x=3
Step 1: Move all the terms to one side by subtracting 35 from both sides
    x
Step 2: Factor.
    (x-7)(x+5)=0
Steps 3: Set each factor equal to zero and solve each resulting equation:
    x-7 = 0 or }x+5=
    x=7 x=-5
Step 4: Check the solutions in the original equation:
    x
    Check 7 Check -5
    7}-2\cdot7=35\quad(-5)\mp@subsup{)}{}{2}-2(-5)=3
        49-14=35 25+10=35
            35=35 35=35
```

    Both solutions are true.
    If a solution is false in original equation, it is an extraneous solution.

## Solving Quadratic Equations hy Factoring

\& A Quadratic Equation in $x$ is an equation that can be written in the form

$$
a x^{2}+b x+c=0
$$

where $a, b$, and $c$ are real numbers, with $a \neq 0$.
Standard Quadratic Equation Form: $a x^{2}+b x+c=0$

* Zero-Product Principle

If the product of two factors is zero, then one (or both) of the factors must have a value of zero.

$$
\text { If } A \cdot B=0, \text { then } A=0 \text { or } B=0
$$

Step 1: Rewrite Equation in Standard Quadratic Form
Step 2: Factor into product of two binomials = 0
Step 3: Determine $x$ values that will make binomials $=0$

$$
\begin{aligned}
x^{2}-7 x+12=(x-3)(x-4) & =0 \\
x-3=0 \mid x-4 & =0 \rightarrow x=\{3,4\}
\end{aligned}
$$

Step 4: Check Solutions in original equation Copyright © 2016 R. Laurie ${ }_{10}$

## Factor the Trinomial Expressions

$$
\begin{aligned}
(2 x+3)(3 x-1)=0 & \text { Prob 4.2.63 } \\
x^{3}-3 x^{2}+2 x=0 & \text { Prob 4.2.75 } \\
3 x^{2}-5 x-2=0 & \text { Prob 4.2.79 }
\end{aligned}
$$

## The Quadratic Formula

The IURAratic Formula
The solutions of the quadratic equation in the form
$a x^{2}+b x+c=0$, with $a \neq 0$, can be determine using the
quadratic formula:
Solve: $2 x^{2}+9 x-5=0 \quad x_{1}, x_{2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
Solution: $a=2, b=9, c=-5$
$x_{1}, x_{2}=\frac{-9 \pm \sqrt{9^{2}-4 \cdot 2 \cdot(-5)}}{2 \cdot 2}=\frac{-9 \pm \sqrt{81-(-40)}}{4}=\frac{-9 \pm \sqrt{121}}{4}=\frac{-9 \pm 11}{4}$
$x_{1}, x_{2}=\frac{-9 \pm 11}{4}$
$x_{1}=\frac{-9+11}{4}=\frac{1}{2}$
$x_{2}=\frac{-9-11}{4}=\frac{-9-11}{4}=\frac{-20}{4}=-5$

## Example: Blood Pressure and Age

A person's normal systolic blood pressure measured in millimeters of mercury depends on his or her age - for men, according to the formula:

Normal Systolic $\mathbf{P}=\mathbf{0 . 0 0 6} A^{2}-\mathbf{0 . 0 2} A+120$
Find the age, to the nearest year, of a man whose systolic blood pressure is 125 mm Hg .

## Example: Solving a Quadratic Equation Using the Quadratic Formula

## Solve: $2 x^{2}=4 x+1$

Solution: Move all the terms to the right:
$2 x^{2}-4 x-1=0 \quad a=2, b=-4$ and $c=-1$
Use the quadratic formula:
$x_{1}, x_{2}=\frac{-(-4) \pm \sqrt{(-4)^{2}-4(2)(-1)}}{2(2)}=\frac{4 \pm \sqrt{16-(-8)}}{4}=\frac{4 \pm \sqrt{24}}{4}$
Note: If the expression
under the square root simplifies to a negative number, then the quadratic equation has no real solutions.

$$
\begin{aligned}
& x_{1}=\frac{4+2 \sqrt{6}}{4}=\frac{2+\sqrt{6}}{2} \\
& x_{2}=\frac{4-2 \sqrt{6}}{4}=\frac{2-\sqrt{6}}{2}
\end{aligned}
$$

## Solution: Blood Pressure and Age

From the formula, $\mathbf{1 2 5}=\mathbf{0 . 0 0 6} \boldsymbol{A}^{\mathbf{2}}-\mathbf{0 . 0 2 A}+\mathbf{1 2 0}$
Rewriting the equation: $0.006 A^{2}-\mathbf{0 . 0 2} A-5=0$
we get the values $\boldsymbol{a}=\mathbf{0 . 0 0 6}, \boldsymbol{b}=\mathbf{- 0 . 0 2}$ and $\boldsymbol{c}=\mathbf{- 5}$

$$
\mathrm{A}=\frac{-(-0.02) \pm \sqrt{(-0.02)^{2}-4(0.006)(-5)}}{2(0.006)}
$$

$$
=\frac{0.02 \pm \sqrt{0.1204}}{0.012} \quad \begin{aligned}
& \text { Therefore, } 31 \text { is the } \\
& \text { approximate age for } \\
& \text { man with a normal }
\end{aligned}
$$ man with a normal

$$
\mathrm{A} » \frac{0.02-0.347}{0.012} »-27(\text { reject })
$$ systolic blood pressure

A » $\frac{0.02+0.347}{0.012} » 31$ of 125 mm Hg .

