5.1: Graphs and Functions

\star Plot points in the rectangular coordinate system.
*Graph equations in the rectangular coordinate system.
*Use function notation.
*Graph functions.
Use the vertical line test.
※Obtain information about a function from its graph.

Copyright © 2015 R. Laurie

Points and Ordered Pairs

* The horizontal number line is the x-axis.
* The vertical number line is the y-axis.
* The point of intersection of these axes is their zero point, called the origin.
* Negative numbers are shown to the left of and below the origin.
* The axes divide the plane into four quarters called "quadrants".

Plotting Points in Coordinate System

Graphs of Equations

* A relationship between two quantities can be expressed as an equation in two variables, such as

$$
y=4-x^{2}
$$

* A solution of an equation in two variables, x and y, is an ordered pair of real numbers with the following property:

When the x-coordinate is substituted for x and the y-coordinate is substituted for y in the equation, we obtain a true statement

* The graph of an equation in two variables is the set of all points whose coordinates satisfy the equation.

Graphing Functions

* If an equation in two variables (x and y) yields precisely one value of y for each value of x, y is a function of x.
* The notation $y=f(x)$ indicates that the variable y is a function of x. The notation $f(x)$ is read " f of x "
* Graph the functions $f(x)=2 x$ and $g(x)=2 x+4$ in the same rectangular coordinate system.
Select integers for $x,-2 \leq x \leq 2$

\boldsymbol{x}	$f(\boldsymbol{x})=\mathbf{2 x}$	$(\boldsymbol{x}, \boldsymbol{y})$ or $(\boldsymbol{x}, f(x))$
-2	$f(-2)=2(-2)=-4$	$(-2,-4)$
-1	$f(-1)=2(-1)=-2$	$(-1,-2)$
0	$f(0)=2 \cdot 0=0$	$(0,0)$
1	$f(1)=2 \cdot 1=2$	$(1,2)$
2	$f(2)=2 \cdot 2=4$	$(2,4)$

Graphing an Equation by Point-Plotting

* Graph $y=4-x^{2}$ Select integers for x, from -3 to 3
* Solution: For each value of x, we find the value for y
* Now plot the seven points and join them with a smooth curve

Vertical Line Test

*If no vertical line intersects a graph more then once, then it is the graph of a function
*Every value of x determines one and only one value of $y=f(x)$
*Use the vertical line test to identify graphs in which y is a function of x
a.

b.

d.

5.2: Graphing Linear Functions

*Use intercepts to graph a linear equation

* Calculate slope
*Use the slope and y-intercept to graph a line
*Graph horizontal and vertical lines
*Interpret slope as a rate of change
* Use slope and y-intercept to model data

Slope of a Line

* Slope is defined as a ratio of a change in y to x *Slope can be interpreted as a rate of change in an applied situation such as a word problem
* The slope of the line through the distinct points (x_{1}, y_{1}) and (x_{2}, y_{2}) is
$m=\frac{\text { Change in } y}{\text { Change in } x}=\frac{\text { rise }}{\text { run }}$

$$
=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

where $x_{2}-x_{1} \neq 0$ change in \mathbf{x}.

Using Intercepts to Graph a Linear Equation

* All linear equations in parametric form such as $A x+B y=C$ are straight lines when graphed
- To locate x-intercept, set $y=0$ and solve $(?, 0)$
- To locate y-intercept, set $x=0$ and solve (0, ?)
*Graph: $3 x+2 y=6$

Find x-intercept by letting $y=0$ and solving for x

$$
3 x+2 y=6
$$

$3 x+2 \cdot 0=6$
$3 x=6$
$x=2$

Find y-intercept by letting $x=0$ and solving for \mathbf{y}.

$$
3 x+2 y=6
$$

$3 \cdot 0+2 y=6$
$2 y=6$
$y=3$

Finding the Slope of a Line

The slope of the line through the distinct points
$\left(x_{1}, y_{1}\right)$ and (x_{2}, y_{2})
$m=\frac{\text { Change in } y}{\text { Change in } x}=\frac{\text { rise }}{\text { run }}$
Find the slope of the line passing through the pair of points: $(-3,-1)$ and $(-2,4)$.
Solution:

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Let $\left(x_{1}, y_{1}\right)=(-3,-1)$ and $\left(x_{2}, y_{2}\right)=(-2,4)$.
We obtain the slope such that
$m=\frac{\text { Change in } y}{\text { Change in } x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4-(-1)}{-2-(-3)}=\frac{5}{1}=5$.

Linear Equation: Slope-Intercept Form

The slope-intercept form of the linear equation of a non-vertical line with slope m and y-intercept b is:

$$
y=m x+b
$$

*Graphing using the slope and y-intercept:

1. Plot the point containing the y-intercept on the y-axis. This is the point $(0, b)$.
2. Obtain a second point using the slope m. Write m as a fraction, and use rise over run, starting at the point containing the y-intercept, to plot this point.
3. Use a straightedge to draw a line through the two points. Draw arrowheads at the end of the line to show that the line continues indefinitely in both directions.

Copyright © 2015 R. Laurie 13

Converting to Slope Intercept Form

Graph the linear function $2 x+5 y=0$ by using the slope and y-intercept.

* Solution: We put the equation in slopeintercept form by solving for y.
parametric form $2 x+5 y=0$

$$
2 x-2 x+5 y=-2 x+0
$$

$$
5 y=-2 x
$$

$$
\frac{5 y}{5}=-\frac{2 x}{5}
$$

$$
y=-\frac{2}{5} x
$$

slope-intercept form

$$
y=-\frac{2}{5} x+0
$$

Slope

Graphing Using Slope and y-intercept

* Graph the linear function by using the slope and y-intercept
* Solution: Since the graph is given in slope-intercept form we can easily find the slope and y-intercept.

Slope
$y=\frac{2}{3} x+2$
Step 1 Plot the point containing the y-intercept on the y-axis.
The y-intercept is $(0,2)$.
Step 2 Obtain a second point using the slope, m. We plot the second point at (3, 4).
Step 3 Use a straightedge to draw a line through the two points.

Horizontal and Vertical Lines

The graph of $\boldsymbol{y}=\boldsymbol{b}$ or $\boldsymbol{f}(\boldsymbol{x})$
$=\boldsymbol{b}$ is a horizontal line.
The y-intercept is b.
The graph of $y=-4$ or $f(x)=-4$.

The graph of $x=a$ is vertical line. The x intercept is a.
The graph of $x=2$.

5.3: Systems of Linear Equations

* Two linear equations are called a Linear System
- To solve for two unknowns you need two equations
- A solution to a linear system is an ordered pair that satisfies both equations
* Determine whether $(1,2)$ is a solution of the linear system:

$$
2 x-3 y=-4
$$

$$
2 x+y=4
$$

* Solution: Because 1 is the x-coordinate and 2 is the
y-coordinate of (1,2), we replace x with 1 and y with 2 .

$$
\begin{aligned}
2 x-3 y & =-4 & & 2 x+y=4 \\
2(1)-3(2) & =-4 & & 2(1)+2=4 \\
2-6 & =-4 & & 2+2=4 \\
-4 & =-4, \text { TRUE } & & 4=4, \text { TRUE }
\end{aligned}
$$

* The pair $(1,2)$ satisfies both equations; it makes each equation true. Thus, the pair is a solution of the system.

No Solution or Infinitely Many Solutions

The number of solutions to a system of two linear equations in two variables is given by one of the following:

Number of Solutions	What This Means Graphically
Exactly one ordered-pair solution	The two lines intersect at one point.
No Solution	The two lines are parallel.
Infinitely many solutions	The two lines are identical.

Solving Linear Systems by Graphing

* For a system with one solution, the coordinates of the point of intersection of the lines is the system's solution.
* Solve by graphing:

$$
\begin{aligned}
& x+2 y=2 \\
& x-2 y=6
\end{aligned}
$$

* Solution:

Graph both lines in the same rectangular coordinate system. Use intercepts to graph equation: x-intercept: Set $y=0$: $(2,0) \quad(6,0)$
\boldsymbol{y}-intercept: Set $\boldsymbol{x}=\mathbf{0}$. $(0,1) \quad(0,-3)$

* We see the two graphs intersect at $(4,-1)$. Hence, this is the solution to the system.

Solving Linear System by Sulbstitution Method

Solve by the substitution method:

$$
\begin{aligned}
& x+y=-1 \\
& 4 x-3 y=24
\end{aligned}
$$

Solution:
Step 1: Solve either of the equations for one variable in terms of the other. $\quad y=-x-1$
Step 2: Substitute the expression from step 1 into the other equation. $\quad 4 x-3(-x-1)=24$
Step 3: Solve the resulting equation containing one variable.

$$
4 x+3 x+3=24 \rightarrow 7 x+3=24 \rightarrow 7 x=21 \rightarrow x=3
$$

Step 4: Back-substitute the $x=3$ value into the equation from Step 1. $y=-3-1=-4$ Therefore the solution is (3,-4).
Step 5: Check. Use this ordered pair to verify that this solution makes each equation true.

Solving Linear System by Addition Method

* Solve by the addition method:

$$
\begin{aligned}
& 3 x+2 y=48 \\
& 9 x-8 y=-24
\end{aligned}
$$

Solution:
Step 1: Rewrite both equations in the form $A x+B y=C$.
Both equations are already in this form.
Step 2: If necessary, multiply either equation or both equations by appropriate numbers so that the sum of the x-coefficients or the sum of the y-coefficients is 0 .

$$
\begin{aligned}
& \begin{array}{c}
3 x+2 y=48 \\
9 x-8 y=-24
\end{array} \xrightarrow{\substack{\text { Mutliply by }-3}} \begin{array}{l}
\text { No Change }
\end{array} \xrightarrow{-9 x-6 y=-144} \begin{array}{l}
9 x-8 y=-24
\end{array} \\
& \text { Step } 3 \text { Add the equations. }-14 y=-168
\end{aligned}
$$

Step 4 Solve the equation in one variable. $y=12$

Addition Method [continued]

Step 5: Back-substitute into one of the two equations and find the value for the other variable.

$$
\begin{aligned}
3 x+2 y & =48 \\
3 x+2(12) & =48 \\
3 x+24 & =48 \\
3 x & =24 \\
x & =8
\end{aligned}
$$

Step 6: Check. The solution to the system is $(8,12)$. We can check this by verifying that the solution is true for both equations.

$$
\begin{array}{ll}
3 \cdot 8+2 \cdot 12=48 & \text { TRUE } \\
9 \cdot 8-8 \cdot 12=-24 & \text { TRUE }
\end{array}
$$

Linear System Exercises

* A hotel has 200 rooms. Those with kitchen facilities rent for $\$ 100$ per night and those without kitchen facilities rent for $\$ 80$ per night. On a night when the hotel was completely occupied, revenues were $\$ 17,000$. How many of each type of room does the hotel have?
Kitchen Rooms $=50$ rooms, Non-kitchen Rooms $=150$ rooms
* Cholesterol intake should be limited to $\mathbf{3 0 0} \mathbf{~ m g}$ or less each day. One serving of scrambled eggs from McDonald's and one Double Beef Whopper from Burger King exceed this intake by 241 mg. Two servings of scrambled eggs and three Double Beef Whoppers provide 1257 mg of cholesterol. Determine the cholesterol content in each item.

McDonald's Scrambled Eggs $=366 \mathrm{mg}$ cholesterol
Burger King Double Beef Whopper $=175 \mathrm{mg}$ cholesterol
Copyright © 2015 R Laurie 24

