5.1: Graphs and Functions

- Plot points in the rectangular coordinate system.
- Graph equations in the rectangular coordinate system.
- *****Use function notation.
- *****Graph functions.
- *****Use the vertical line test.
- *Obtain information about a function from its graph.

Points and Ordered Pairs

- Each point in the rectangular coordinate system corresponds to an ordered pair, (x, y).
- * Look at the ordered pairs: (-5, 3) and (3, -5)
- The figure shows how we plot, or locate the points corresponding to the ordered pairs.

The first numberThe second numberin each pair, calledin each pair, calledthe x-coordinate,in each pair, calleddenotes thedenotes the verticaldistance anddistance anddirection from theorigin along the x-axis.it.

Copyright © 2015 R. Laurie

Plotting Points in Coordinate System

Copyright © 2015 R. Laurie

Page 1 of 6

f(x) = 2x

Graphing Functions

- If an equation in two variables (x and y) yields precisely one value of y for each value of x, y is a *function* of x. g(x) = 2x + y(x) + y(x
- The notation y = f(x) indicates that the variable y is a function of x. The notation f(x) is read "f of x"
- * Graph the functions f(x) = 2x and g(x) = 2x + 4 in the same rectangular coordinate system. Select integers for $x - 2 \le x \le 2$

x	f(x)=2x	(x, y) or $(x, f(x))$	x	g(x)=2x+4	(x, y) or $(x, g(x))$
-2	f(-2) = 2(-2) = -4	(-2, -4)	-2	g(-2) = 2(-2) + 4 = 0	(-2, 0)
-1	f(-1) = 2(-1) = -2	(-1, -2)	-1	g(-1) = 2(-1) + 4 = 2	(-1,2)
0	$f(0) = 2 \cdot 0 = 0$	(0, 0)	0	$g(0) = 2 \cdot 0 + 4 = 4$	(0,4)
1	$f(1) = 2 \cdot 1 = 2$	(1, 2)	1	$g(1) = 2 \cdot 1 + 4 = 6$	(1,6)
2	$f(2) = 2 \cdot 2 = 4$	(2, 4)	2	$g(2) = 2 \cdot 2 + 4 = 8$	(2,8)

Graphing an Equation by Point-Plotting

- * Graph $y = 4 x^2$ Select integers for x, from -3 to 3
- * Solution: For each value of x, we find the value for y
- Now plot the seven points and join them with a smooth curve

5	Ordered Pair (x, y)	$y=4-x^2$	x
3	(-3, -5)	$y = 4 - (-3)^2 = 4 - 9 = -5$	-3
2	(-2, 0)	$y = 4 - (-2)^2 = 4 - 4 = 0$	-2
	(-1,3)	$y = 4 - (-1)^2 = 4 - 1 = 3$	-1
3 - 2 - 1 + 1 + 2 + 3 + 5	(0,4) -4-	$y = 4 - 0^2 = 4 - 0 = 4$	0
	(1,3)	$y = 4 - 1^2 = 4 - 1 = 3$	1
4	(2,0)	$y = 4 - 2^2 = 4 - 4 = 0$	2
-5-	(3, -5)	$y = 4 - 3^2 = 4 - 9 = -5$	3

Copyright © 2015 R. Laurie

Page 2 of 6

5.2: Graphing Linear Functions

*Use intercepts to graph a linear equation

- Calculate slope
- ***** Use the slope and y-intercept to graph a line
- *Graph horizontal and vertical lines
- Interpret slope as a rate of change
- ***** Use slope and y-intercept to model data

Copyright © 2015 R. Laurie

Finding the Slope of a Line

Copyright © 2015 R. Laurie

Page 3 of 6

Linear Equation: Slope-Intercept Form

The slope-intercept form of the linear equation of a non-vertical line with slope *m* and *y*-intercept *b* is:

y = mx + b

*Graphing using the slope and y-intercept:

- 1. Plot the point containing the *y*-intercept on the *y*-axis. This is the point (0,*b*).
- 2. Obtain a second point using the slope *m*. Write *m* as a fraction, and use rise over run, starting at the point containing the *y*-intercept, to plot this point.
- 3. Use a straightedge to draw a line through the two points. Draw arrowheads at the end of the line to show that the line continues indefinitely in both directions.

Copyright © 2015 R. Laurie 13

Graphing Using Slope and *µ***intercept**

- Graph the linear function by using the slope and *y*-intercept
- Solution: Since the graph is given in slope-intercept form we can easily find the slope and y-intercept.
 - **Step 1** Plot the point containing the *y*-intercept on the *y*-axis. The *y*-intercept is (0, 2).
 - **Step 2** Obtain a second point using the slope, *m*. We plot the second point at (3, 4).
 - **Step 3** Use a straightedge to draw a line through the two points.

Horizontal and Vertical Lines

The graph of y = b or f(x)= b is a *horizontal line*. The *y*-intercept is b. The graph of y = -4 or f(x) = -4.

The graph of x = a is a vertical line. The xintercept is a. The graph of x = 2.

Copyright © 2015 R. Laurie

Page 4 of 6

Addition Method (continued)

Step 5: Back-substitute into one of the two equations and find the value for the other variable.

3x + 2y = 48 3x + 2(12) = 48 3x + 24 = 48 3x = 24x = 8

Step 6: Check. The solution to the system is (8,12). We can check this by verifying that the solution is true for both equations.

3•8 + 2•12 = 48 TRUE 9•8 - 8•12 = -24 TRUE

Copyright © 2015 R. Laurie

