## 5.4-6: Functions

*Graph quadratic functions.
-Use quadratic models.
※Graph exponential functions.
-Use exponential models.
*Graph logarithmic functions.

- Use logarithmic models.
* Determine an appropriate function for modeling data.

Copyright $\odot 2015$ R. Laurie ${ }_{1}$

## Modeling with Quadratic Functions



## 5.4: Modeling with Quadratic Functions

* A Quadratic Function is any function of the form

$$
y=a x^{2}+b x+c \text { or } f(x)=a x^{2}+b x+c
$$

$$
\text { where } a, b, \text { and } c \text { are real numbers, with } a \neq 0
$$

* Quadratic functions graph as a Parabola
* The Vertex of the parabola is the lowest point Minima or the highest point Maxima on the graph
Vertex is a point $=\left(V_{x}, V_{y}\right)$, where $V_{x}=\frac{-b}{2 a}$ and $V_{y}=f\left(V_{x}\right)$
* $y$-intercept is constant coefficient $c$ and is $(0, c)$
* $x$-intercepts may occur and can be found by solving for $x$ when $f(x)=0$, or $a x^{2}+b x+c=0$
- Usually the Quadratic Formula is utilized to find the two solutions to the Quadratic Equation described above


## Graphing the Quadratic Equation

Graph the quadratic function:
Solution: We follow the steps:

$$
f(x)=y=x^{2}-2 x-3
$$

1) Determine how the parabola opens. Since $a$ is the coefficient of $x^{2}$ and $a=+1$ in this case, then the parabola opens upward.
2) Find the vertex $V=\left(V_{x}, V_{y}\right)$ Formula to find $x$-coordinate: Plug $x=1$ into the original function to find $y$-coordinate: The vertex $V=(1,-4)$.

$$
\begin{gathered}
V_{x}=-\frac{b}{2 a}=\frac{-(-2)}{2(1)}=1 \\
V_{y}=f\left(V_{x}\right)=\left(V_{x}\right)^{2}-2\left(V_{x}\right)-3 \\
V_{y}=f(1)=(1)^{2}-2(1)-3=-4 \\
\quad f(0)=y=0^{2}-2(0)-3=-3
\end{gathered}
$$

The parabola passes through the point $(0,-3)$.
4) Find the x-intercepts. Solve for
The $x$-intercepts are 3 and -1 . $\quad f(x)=y=0$, or $x^{2}-2 x-3=0$ The x-intercepts are 3 and -1 The parabola passes through $(3,0)$ and $(-1,0)$
5) Plot the points and connect with parabola

$$
(x-3)(x+1)=0
$$

Copyright © 2015 R. Laurie ${ }_{4}$

## Plotting the Parabola

Plot the points:

1) Vertex
2) $y$-intercept
3) $x$-intercepts

Connect points with smooth
Parabolic curve


## Ballistic Trajectory [y-axis only]

* A coastal defense canon fires a shell with an initial vertical velocity of 800 feet/second and an initial altitude of 200 feet above the water. The altitude of the shell can be approximated using the following function where $A(t)$ is represents the altitude of the shell in feet at $\boldsymbol{t}$ seconds after launch:

$$
A(t)=-16 t^{2}+800 t+200 \text { feet }
$$

-What is the altitude of the shell 30 seconds after launch?
What time does the shell reach its maximum altitude?

- What is the maximum altitude of the shell?
- At what time does the shell splash down in the water?


## Earth Gravitation and Falling Ohjects

* An F-18 drops a bomb from an altitude of 8,000 feet above sea level on a target located at an elevation of 2,000 feet above sea level. The bomb altitude in feet after release is described by the following function $A(t)$ as a function of $t$ in seconds.

$$
A(t)=-16 t^{2}+8,000 \text { feet }
$$

- What is the altitude of the bomb 10 seconds after release?
- How many seconds will it take the bomb to reach its target?



## 5.5: Exponential Functions

*An Exponential function has the form:

$$
y=f(x)=b^{x}
$$

$\bullet b$ is called the base and $b>0$ and $b \neq 1$

- $x$ can be any real number
$\star$ Euler's Constant is an irrational number that is frequently used as the base in an exponential function for mathematical models
- $e=2.71828182846 \ldots$
- The number e is called the natural base.
* The natural exponential function.

$$
y=g(x)=e^{x}
$$



## Alcohol and Risk of a Gar Accident

$\star$ Medical research indicates that the risk of having a car accident increases exponentially as the concentration of alcohol in the blood increases. The risk is modeled by

$$
R=6 e^{12.77 x}
$$

where $x$ is the blood alcohol concentration and $R$, given as a percent, is the risk of having a car accident. In many states, it is illegal to drive with a blood alcohol concentration at 0.08 or greater. What is the risk of a car accident with a blood alcohol concentration at 0.08 ?
*Solution: We substitute 0.08 for $x$ in the function.

$$
\begin{aligned}
& \boldsymbol{R}=\mathbf{6} \mathbf{e}^{12.77 x} \\
& \boldsymbol{R}=\mathbf{6} \mathbf{e}^{12.77(0.08)}
\end{aligned}
$$

* Putting this in the calculator, we get an approximation of 16.665813. Rounding to one decimal place, the risk of getting in a car accident is approximately $16.7 \%$ with a blood alcohol concentration at 0.08 .


## Exponential Models

* The bar graph below show the world population for seven selected years from 1950 through 2010.
* The $p(x)$ exponential function models world population in billions, x years after 1949 .

$$
p(x)=2.577(1.017)^{x}
$$

* Use this model to determine the world population in 2000 and 2026

$$
\begin{aligned}
& P(51)=2.577(1.017)^{51} \approx 6.1 \\
& p(77)=2.577(1.017)^{77} \approx 9.4
\end{aligned}
$$



## 5.6: Logarithmic Functions

* Logarithmic functions have the form:

$$
y=g(x)=\log _{b} x \quad x=b^{y}
$$

- $b$ is called the base and $b>0$ and $b \neq 1$
- $X>0$ and can be any real number
* Standard Log function on calculator is base 10

$$
y=g(x)=\log x=\log _{10} x \quad x=10^{y}
$$

* Natural Logarithmic functions have base e

$$
y=h(x)=\ln x=\log _{e} x \quad x=e^{y}
$$

* Calculator determination of $\log _{b} x$

$$
\log _{b} x=\frac{\log x}{\log b} \quad \log _{2} 16=\frac{\log 16}{\log 2}=4 \quad 16=2^{4}
$$



## Earthquake Richter Log Scale

* An earthquake measured $63,100,000$ times greater then the threshold intensity $\mathrm{I}_{0}$, which is the weakest earthquake measurable on a seismograph. The magnitude on the Richter scale is defined by the function:

$$
R(I)=\log \left(\frac{I}{I_{o}}\right)
$$

What is the Richter scale number of this earthquake?

- How does this compare with the 9.0 Tohoku Earthquake of 2011?



## Temperature in an Enclosed Vehicle

When the outside air temperature is anywhere from $72^{\circ}$ to $96^{\circ} \mathrm{F}$, the temperature in an enclosed vehicle climbs by $43^{\circ}$ in the first hour. The scatter plot is given below.
the function
$f(x)=-11.6+13.4 \ln x$ models the temperature increase after $x$ minutes... What is the temperature Increase after 50 minutes?
$f(50)=-11.6+13.4 \ln 50$
$f(50) \approx 41$ degrees $F$
Temperature Increase in an Enclosed Vehicle


## Determine Function for Modeling Data

| Description of Data Points <br> in a Scatter Plot | Model |
| :--- | :--- |
| Lie on or near a line | Linear function $y=m x+b$ or $f(x)=m x+b$ |
| Increasing more and more <br> rapidly | Exponential function $y=b^{x}$, or $f(x)=b^{x}, b>1$ |$|$| Increasing, although rate of <br> increase is slowing down | Logarithmic function, $\boldsymbol{y}=\log _{b} x, b>1$ <br> $y=\log _{b} x$ means $b^{y}=\boldsymbol{x}$. |
| :--- | :--- |
| Decreasing and then <br> increasing | Quadratic Function $y=f(x)=a x^{2}+b x+c$ <br> $a>0$. The vertex is a minimum. |
| Increasing and then <br> decreasing | Quadratic Function $y=f(x)=a x^{2}+b x+c$ <br> $a<0$. The vertex is a maximum. |

