Math103 Extra Problems

Covered in Thursdays Class

1. An earthquake measured $63,100,000$ times greater then the threshold intensity I_{O} which is the weakest earthquake measurable on a seismograph. The magnitude on the Richter scale is defined by the function:

$$
R(I)=\log \left(\frac{I}{I_{O}}\right)
$$

2. An F-18 drops a bomb from an altitude of 8,000 feet above sea level on a target located at an elevation of 2,000 feet above sea level. The bomb altitude in feet after release is described by the following function $A(t)$ as a function of t in seconds.

$$
A(t)=-16 t^{2}+8,000
$$

What is the altitude of the bomb 10 seconds after release?

How many seconds will it take the bomb to reach its target? \qquad
3. A coastal defense canon fires a shell with an initial vertical velocity of 800 feet/second and an initial altitude of 200 feet above the water. The altitude of the shell can be approximated using the following function where $A(t)$ is represents the altitude of the shell in feet at t seconds after launch:
$A(t)=-16 t^{2}+800 \mathrm{t}+200$ feet (show units in answer)
What is the altitude of the
shell 30 seconds after launch?

What time does the shell
reach its maximum altitude? \qquad

What is the maximum
altitude of the shell?

At what time does the shell
splash down in the water?

