Ges: ${ }^{2}$ Gebra

Quickstart for Desktop Version

What is GeoGebra?

- Dynamic Mathematics Software in one easy-to-use package
- For learning and teaching at all levels of education
- Joins interactive 2D and 3D geometry, algebra, tablets, graphing, calculus, and statistics
- Open source software, freely available from www.geogebra.org

Quick Facts

- GeoGebra facilitates the creation of mathematical constructions and models by students. It allows interactive explorations by dragging objects and changing parameters.
- GeoGebra is also an authoring tool for teachers to create interactive worksheets. Find free classroom materials and share your own on www.geogbratube.org.

Getting Started

The image above shows the default screen of GeoGebra's desktop version. Depending on what you would like to use GeoGebra for (e.g. Geometry, Algebra, Statistics), you may choose the corresponding Perspective from the Perspectives menu. By default, the Algebra View and Graphics View are displayed in the GeoGebra window.

The Toolbar consists of a series of toolboxes containing a collection of related tools. Using these tools you can create constructions in the Graphics View with your mouse. At the same time the corresponding coordinates and equations are displayed in the Algebra View. Please note that each View has its own Toolbar and therefore, gives access to a different set of tools.

The Input Bar at the bottom of the GeoGebra window is used to directly enter coordinates, equations, commands, or functions. After pressing the Enter key, the algebraic representation of these objects is shown in the Algebra View while their graphical representation is displayed in the Graphics View.

In addition, GeoGebra offers a 3D Graphics View, a CAS View to use GeoGebra's Computer Algebra System for symbolic computations, a Spreadsheet View to work with data and statistical concepts, as well as a Probability Calculator to calculate and graph probability distributions.

All Views of GeoGebra are linked dynamically, meaning that if you modify an object in one of the Views, its representations in the other Views automatically adapt to these changes if possible.

Example 1: Circumcircle of a Triangle

Task: Construct a triangle A, B, C and its circumcircle using GeoGebra.

Preparations

- Open a new GeoGebra window.
- Click on the arrow on the right side of the Graphics View in order to open the Perspectives sidebar and select the Geometry Perspective.
- Familiarize yourself with the tools provided in the Graphics View Toolbar. Hint: You can open a toolbox by clicking on the small arrow in the lower right corner of the default tools.

Construction Steps

Hints

Try the Undo / Redo buttons on the right side of the Toolbar.
To hide an object, Right-click (Mac OS: Ctrl-click) on it and uncheck * Show Object in the appearing context menu.

You can change the appearance of objects (e.g. change color or line style, show / hide labels) easily using the Style Bar. Select the object you want to enhance and click on the little arrow in the upper left corner of the Graphics View in order to open the \square - Style Bar.

You can also show / hide \perp axes and a \# grid using the Style Bar. Click on the white background of the Graphics View to make sure that no object is selected. Then, click on the little arrow in the upper left corner of the Graphics View in order to open the + \#nc. Style Bar.

The Construction Protocol (see View menu) provides a table listing all the construction steps. Using your arrow keys you can go through the construction steps again. Furthermore, you can change the order of construction steps by dragging rows up or down.

Example 2: Parameters of a Linear Equation

Task: Use sliders to dynamically change the parameters of a linear equation.

Preparations

- Open a new GeoGebra window using the File menu.
- Click on the arrow on the right side of the Graphics View in order to open the Perspectives sidebar and select the : Algebra \& Graphics Perspective.

Construction Steps

1	Enter $\mathrm{y}=0.8$ * $\mathrm{x}+3.2$
$\$$	Exploration: Which parameters can be changed when you modify the equation of the line in the Algebra View (use the arrow keys) or the line in the Graphics View (use the mouse)? Hint: Make sure the equation/line is selected before you try to modify it.
E	In the Graphics View, use the Delete tool in order to delete the line. Hint: You need to open a toolbox in order to select this tool.
$\xrightarrow{\mathrm{a}=2}$	Use the Slider tool in order to create two sliders a and b using the default settings of sliders. Hint: After clicking on the Graphics View, a window appears allowing you to specify the parameters of your slider. Click Apply in order to close the window and create a slider.
5	Enter $\mathrm{y}=\mathrm{a} * \mathrm{x}+\mathrm{b}$ in the Input Bar and hit the Enter key.
$>$	Select tool Intersect from the Graphics View Toolbar in order to create the intersection point A between the line and the y-axis.
- ${ }^{\text {A }}$	Use the Point on Object tool in order to create a point B at the origin.
\bigcirc	Use the Segment tool in order to create a segment between points A and B.
-	e the Slope tool in order to create a slope (triangle) of the line.

Hint

You might want to enhance the appearance of your construction using the Style Bar (e.g. increase the line thickness of the segment to make it visible on top of the y-axis, show the slope's value instead of its name). Select the object you want to enhance and then click on the little arrow in the upper left corner of the Graphics View in order to open the Style Bar.

Example 3: Intersection of Polynomial Functions

Task: Explore how a parabola can be intersected with a linear function by determining the roots of their difference function.

Preparations

- Open a new GeoGebra window using the File menu.
- Click on the arrow on the right side of the Graphics View in order to open the Perspectives sidebar and select the $\| \mathrm{x}=$ CAS Perspective.

Construction Steps

1		In the CAS View, create a quadratic polynomial by entering $f(x):=x^{\wedge} 2-3 / 2 * x+2$ into the first row and hitting the Enter key.
2	$\xrightarrow{a=2}$	Select the Slider tool from the Graphics View Toolbar and create two sliders a and b using the default settings of sliders. Hint: After clicking on the Graphics View, a window appears allowing you to specify the parameters of your slider. Click Apply in order to close the window and create a slider.
3		In the CAS View, create a linear function by entering $g(x):=a * x+b$ into the next row and hitting the Enter key.
4	4	In the Graphics View, use the Move tool in order to change the value of slider a to 0.5 and the value of slider b to 2 .
5		In the CAS View, enter $h(x):=f(x)-g(x)$ in order to determine the difference between those functions.
6	$\begin{gathered} 15 \\ 3 \cdot 5 \end{gathered}$	Enter $\mathrm{h}(\mathrm{x})$, then select the tool Factor from the CAS View Toolbar in order to factorize the polynomial. Hint: You can now use these factors to determine the roots of $h(x)$.
7		Enter Solve [h(x)] in order to confirm the roots.
8		Enter Intersect $[\mathrm{f}(\mathrm{x}), \mathrm{g}(\mathrm{x})$] in order to create the intersection points of functions $f(x)$ and $g(x)$.
9		Exploration: Try to find out what the intersection points of $f(x)$ and $g(x)$ have in common with the roots of the difference function $h(x)$. Change the parameters of the linear function to find out for which values of a and b there are two, one, or no intersection point(s). Hint: Use the Move tool in order to change the values of the sliders and create new functions to explore.

Hints

The CAS View allows you to work with fractions, equations and formulas that include undefined variables.

Input and automatic completion
$=\quad$ Enter $\mathrm{y}=2 \mathrm{x}+1$ in order to define an equation.
$:=\quad$ Enter $\mathrm{f}(\mathrm{x}):=2 \mathrm{x}+1$ in order to assign the name f to the function.
()

If you enter opening parentheses or brackets, GeoGebra will automatically insert the corresponding closing counterpart.

While entering a command in the CAS View, GeoGebra tries to automatically complete your command in order to help you with the syntax.
Hint: Select the command you want from the appearing list and hit Enter in order to accept the suggestion.

The CAS Toolbar offers three different tools to evaluate your input with:
$=\quad$ 'Evaluate' calculates and simplifies the input in a symbolic way.
$\approx \quad$ 'Numeric' calculates the input numerically and yields the result in decimal notation.
'Keep Input' keeps and checks the input. This is very useful if you
$\checkmark \quad$ don't want your input to be simplified automatically, for example when introducing the manipulation of expressions.

You can also manipulate only part of an expression by selecting it with the mouse and then clicking on a tool like ${ }_{3}^{3,5}$. Factor.

Example 4: Scatter Plot and Best Fit Line

Task: Create a Scatter Plot and conduct a Two Variable Regression Analysis for a given data set. Explore how outliers affect the best fit line.

Preparations

- Open a new GeoGebra window using the File menu.
- Click on the arrow on the right side of the Graphics View in order to open the Perspectives sidebar and select the 部 Spreadsheet Perspective.

Construction Steps

		In the Spreadsheet View, enter the following data values into the cells of column A: A1: $1 \quad A 2: 5 \quad A 3: 2 \quad$ A4: $8 \quad$ A5: -2 Hint: Always evaluate your input by pressing the Enter key.
2		Enter the following numbers into the spreadsheet cells of column B : B1: $-1 \quad$ B2: $2 \quad$ B3: $3 \quad$ B4: $4 \quad$ B5: 1
3	$\{\bullet \bullet \bullet\}$	Create a Scatter Plot from this data: Highlight all cells of columns A and B that contain data. Then, select the tool Create List of Points from the Spreadsheet View Toolbar and click Create in order to create points from your data set. Note: The values in column A determine the x-coordinates and the values in column B specify the y-coordinates of the plotted points. Hint: You might want to use tool Move Graphics View if not all five points are visible in the Graphics View.
		Select the Best Fit Line tool from the Graphics View Toolbar. Create the line that best fits your data points by using a selection rectangle that contains all data points plotted. Hint: Create a selection rectangle by clicking in the upper left corner of the Graphics View and steadily sliding your mouse to the lower right corner of the Graphics View. Make sure that all data points lie within the selection rectangle.
5	W	Exploration: Using this construction you can easily demonstrate how outliers affect the best fit line of a data set. Select the Move tool and drag one of the points in order to create an outlier. Hint: You can also change the initial data directly in the Spreadsheet View.

Hints

You may change the style (e.g. color, thickness) of the line and points. Select the object you want to enhance and then click on the little arrow in the upper left corner of the Graphics View in order to open the $\square \bullet \bullet$ Style Bar.

GeoGebra allows you to import data from other spreadsheet software into the Spreadsheet View:

- Select and copy the data you want to import.

Hint: For example, use the keyboard shortcut Ctrl - C (Mac OS: Ctrl - C) in order to copy the data to your computer's clipboard.

- Open a GeoGebra window and show the Spreadsheet View.
- Click on the spreadsheet cell that should contain the first data value (e.g. cell Al).
- Paste the data from your computer's clipboard into GeoGebra's Spreadsheet View.
Hint: For example, right - click (Mac OS: Ctrl - click) on the highlighted cell and select Easte.

Example 5: Intersection of a Plane and a Line

Task: Find out how you can intersect a plane and a line in the 3D Graphics View of GeoGebra.

Preparations

- Open a new GeoGebra window using the File menu.
- Click on the arrow on the right side of the Graphics View in order to open the Perspectives sidebar and select the $\Delta 3 D$ Graphics Perspective.

Construction Steps

1	Enter p: $\mathrm{x}+\mathrm{y}=\mathrm{z}$ into the Input Bar and hit the Enter key in order to define a plane p.
2	Create two points A and B by entering A $=(3,4, ~ 3)$ and B $=(-4,-2,-1)$ in the Input Bar, hitting the Enter key after each input.
3	Select the Line tool from the 3D Graphics Toolbar and click on the points A and B respectively to create the line a through both points.
4 Select the Intersect tool. Then, click on the plane and the line in	
order to create the intersection point C.	

Hints

You might want to use the tool \& Rotate 3D Graphics View to get different views on your construction.

You might want to enhance the appearance of your construction by using the Style Bar. Select the object you want to enhance and then click on the little arrow in the upper left corner of the 3D Graphics View in order to open the ■-1 - M- Style Bar.

You can also \square hide the \mathbf{x} - \mathbf{y}-plane or the \downarrow coordinate axes using the Style Bar. Click on the white background of the Graphics View to make sure that no object is selected. Then, click on the little arrow in the upper left corner of

Further Information

You can find further information, materials, and help on our web pages at www.geogebra.org.

